
Mildred

Mildred ii

COLLABORATORS

TITLE :

Mildred

ACTION NAME DATE SIGNATURE

WRITTEN BY August 7, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Mildred iii

Contents

1 Mildred 1

1.1 Mildred v1.38 . 1

1.2 Mildred information . 17

1.3 Library History . 19

1.4 mc2prowlacing . 22

1.5 mc2pcolumnlacing . 22

1.6 mc2prowtoggle . 22

1.7 mc2pcolumntoggle . 23

1.8 mc2ptogglesingle . 23

1.9 mc2ptoggledouble . 23

1.10 mc2ptoggletriple . 23

1.11 mc2ptoggle . 23

1.12 m040c2pusage . 24

1.13 mc2pcpumode . 24

1.14 mc2pwindow . 24

1.15 mc2pwindowwidth . 24

1.16 mc2pwindowheight . 25

1.17 mc2pwindownewheight . 25

1.18 mc2p . 25

1.19 mreservec2pwindows . 25

1.20 mreserveshapes . 26

1.21 mreservebitmaps . 26

1.22 minitshape . 26

1.23 mshape . 27

1.24 mbitmap . 27

1.25 mautocookie . 27

1.26 mautostencil . 27

1.27 mfreec2pwindows . 27

1.28 mfreec2pwindow . 28

1.29 mfreeshapes . 28

Mildred iv

1.30 mfreeshape . 28

1.31 mfreebitmaps . 28

1.32 mfreebitmap . 28

1.33 mshapewidth . 29

1.34 mbitmapwidth . 29

1.35 mshapeheight . 29

1.36 mbitmapheight . 29

1.37 maddrc2pwindow . 29

1.38 maddrshape . 29

1.39 maddrbitmap . 30

1.40 mhandle . 30

1.41 mbitmaporigin . 30

1.42 mmidhandle . 30

1.43 mbitmapmidorigin . 30

1.44 musec2pwindows . 31

1.45 musec2pwindow . 31

1.46 museshapes . 31

1.47 museshape . 31

1.48 musebitmaps . 31

1.49 musebitmap . 32

1.50 musedc2pwindow . 32

1.51 musedshape . 32

1.52 musedbitmap . 32

1.53 mcludgeshape . 32

1.54 mcludgebitmap . 32

1.55 mautousec2pwindows . 33

1.56 mautouseshapes . 33

1.57 mautousebitmaps . 33

1.58 mmakecookies . 33

1.59 mmakecookie . 34

1.60 mmakestencils . 34

1.61 mmakestencil . 34

1.62 mfreecookies . 34

1.63 mfreecookie . 34

1.64 mfreestencils . 35

1.65 mfreestencil . 35

1.66 mautoshapewrap . 35

1.67 mautobitmapwrap . 35

1.68 mshapewrap . 36

Mildred v

1.69 mbitmapwrap . 36

1.70 mcludgeshapestruct . 36

1.71 mcludgebitmapstruct . 36

1.72 mcopyc2pwindow . 36

1.73 mshapewindow . 37

1.74 mbitmapwindow . 37

1.75 mbitmapshape . 37

1.76 mshapesbitmap . 37

1.77 mcopyhandle . 38

1.78 mcopyorigin . 38

1.79 mautocookiexflip . 38

1.80 mautocookieyflip . 38

1.81 mautostencilxflip . 38

1.82 mautostencilyflip . 38

1.83 mautocookieflip . 39

1.84 mautostencilflip . 39

1.85 mshapexflip . 39

1.86 mshapeyflip . 39

1.87 mbitmapxflip . 39

1.88 mbitmapyflip . 40

1.89 mcookiexflip . 40

1.90 mcookieyflip . 40

1.91 mstencilxflip . 40

1.92 mstencilyflip . 40

1.93 mautoshapeclip . 40

1.94 mautobitmapclip . 41

1.95 mshapeclip . 41

1.96 mbitmapclip . 41

1.97 mgetashape . 41

1.98 mgetabitmap . 42

1.99 mscroll . 42

1.100mscrollshape . 42

1.101mscrollstencil . 42

1.102mscrollcookie . 42

1.103mmaskscroll . 43

1.104mmaskscrollshape . 43

1.105mmaskscrollstencil . 43

1.106mmaskscrollcookie . 43

1.107mscrollbitmaptoshape . 43

Mildred vi

1.108mscrollshapetobitmap . 44

1.109mscrollstenciltocookie . 44

1.110mscrollcookietostencil . 44

1.111mmaskscrollbitmaptoshape . 44

1.112mmaskscrollshapetobitmap . 44

1.113mmaskscrollstenciltocookie . 45

1.114mmaskscrollcookietostencil . 45

1.115mblockscroll . 45

1.116mblockscrollshape . 45

1.117mblockscrollstencil . 45

1.118mblockscrollcookie . 46

1.119mblockscrollbitmaptoshape . 46

1.120mblockscrollshapetobitmap . 46

1.121mblockscrollstenciltocookie . 46

1.122mblockscrollcookietostencil . 46

1.123mcpu . 47

1.124mcls . 47

1.125mclsshape . 47

1.126mclsstencil . 47

1.127mclscookie . 48

1.128mplot . 48

1.129mplotshape . 48

1.130mplotstencil . 48

1.131mplotcookie . 48

1.132mpoint . 48

1.133mpointshape . 49

1.134mpointstencil . 49

1.135mpointcookie . 49

1.136msscroll . 49

1.137msscrollshape . 50

1.138msscrollbitmaptoshape . 50

1.139msscrollshapetobitmap . 50

1.140msmaskscroll . 50

1.141msmaskscrollshape . 51

1.142msmaskscrollbitmaptoshape . 51

1.143msmaskscrollshapetobitmap . 51

1.144msblockscroll . 51

1.145msblockscrollshape . 52

1.146msblockscrollbitmaptoshape . 52

Mildred vii

1.147msblockscrollshapetobitmap . 52

1.148msscrollcut . 52

1.149museshapebank . 52

1.150mpicturedissolvein . 53

1.151mmaskscrollmode . 53

1.152mblitmode . 54

1.153mblit . 54

1.154mblock . 54

1.155mtile16x16 . 54

1.156mtile32x32 . 55

1.157mstile16x16 . 55

1.158mstile32x32 . 55

1.159mstile16x16store . 55

1.160mstile32x32store . 55

1.161mtile16x16store . 56

1.162mtile32x32store . 56

1.163mreservequeues . 56

1.164mfreequeues . 56

1.165mfreequeue . 57

1.166maddrqueue . 57

1.167mqueue . 57

1.168mflushqueue . 57

1.169mqblitmode . 57

1.170mautousequeues . 58

1.171musequeues . 58

1.172musequeue . 58

1.173musedqueue . 58

1.174mqblit . 58

1.175mqblock . 59

1.176munqueue . 59

1.177mbitmapptr . 59

1.178mshapeptr . 59

1.179mstencilptr . 60

1.180mcookieptr . 60

1.181mqdummy . 60

1.182msblitmode . 60

1.183msblit . 61

1.184msblock . 61

1.185msblitcut . 61

Mildred viii

1.186mqsblitmode . 62

1.187mqsblit . 62

1.188mqsblock . 62

1.189mqsblitcut . 62

1.190mboxf . 62

1.191mboxfshape . 63

1.192mboxfstencil . 63

1.193mboxfcookie . 63

1.194mbox . 63

1.195mboxshape . 63

1.196mboxstencil . 64

1.197mboxcookie . 64

1.198mplanar16tobitmap . 64

1.199mplanar16toshape . 64

1.200mgenericptr . 65

1.201mcludgecookie . 65

1.202mcludgestencil . 65

1.203munqueuerange . 65

1.204mremap . 65

1.205mremapshape . 66

1.206mline . 66

1.207mlineshape . 66

1.208mlinestencil . 66

1.209mlinecookie . 67

1.210mremapusingshape . 67

1.211mremapshapeusingshape . 68

1.212mink . 68

1.213mcolourmode . 68

1.214mreservetables . 68

1.215mfreetables . 69

1.216mfreetable . 69

1.217maddrtable . 69

1.218mtable . 69

1.219mflushtable . 69

1.220mautousetables . 70

1.221musetables . 70

1.222musetable . 70

1.223musedtable . 70

1.224mtableptr . 70

Mildred ix

1.225mremapmode . 70

1.226msimpleremapmode . 71

1.227msmaskscrollmode . 71

1.228mplotparticles . 72

1.229mgrabparticles . 72

1.230mdrawparticles . 72

1.231mgrabparticlesandplot . 73

1.232maddtoparticles . 73

1.233mplotparticlesa . 73

1.234mgrabparticlesa . 74

1.235mdrawparticlesa . 74

1.236mgrabparticlesandplota . 74

1.237maddtoparticlesa . 75

1.238mplotparticlesq . 75

1.239mgrabparticlesq . 75

1.240mdrawparticlesq . 75

1.241mgrabparticlesandplotq . 75

1.242maddtoparticlesq . 76

1.243mwrapparticles . 76

1.244mwrapparticlesa . 76

1.245mwrapparticlesq . 76

1.246mreboundparticles . 77

1.247mreboundparticlesq . 77

1.248mprocessor . 77

1.249maddxytoparticles . 78

1.250maddxytoparticlesa . 78

1.251maddxytoparticlesq . 78

1.252mparticlemode . 78

Mildred 1 / 79

Chapter 1

Mildred

1.1 Mildred v1.38

Here is the documentation for Mildred v1.38.

Mildred v1.38 and any earlier versions are Copyright (c) 1998-1999 Paul West and
Pagan Software.

Information

History
cpu

MCPU
Processor.b" ; Set cpu routines allowed to use. 0..3=000..030+, ←↩

or >=4=040+. CAREFUL!!

Mc2pCPUmode
CPU.b ; Set cpu c2p uses. Use ‘Processor’ or MProcessor. <4=030-, ←↩

>3=040+

M040c2pUsage
Status.b ; On/Off - Availability of 040 c2p. Overrides ←↩

Mc2pCPUmode

MProcessor
; Returns value 0..6 representing MC68000..MC68060 cpu according ←↩

to exec\AttnFlags

c2p

MReservec2pWindows
[(]NumberOfWindows.w[)] ; Reserve structure-memory for c2pWindows

MAutoUsec2pWindows
True/False ; Automatically ‘use’ new c2pWindows. <>0=True

Mc2pRowLacing

Mildred 2 / 79

State.b ; Toggle row-lacing in c2p On/Off. NonZero=On

Mc2pColumnLacing
State.b ; Toggle column-lacing in c2p On/Off

Mc2pRowToggle
; Toggle c2p row lacing between Even/Odd rows

Mc2pColumnToggle
; Toggle c2p column lacing between Even/Odd columns

Mc2pToggleSingle
; Toggle c2p lacing for single-buffered display

Mc2pToggleDouble
Buf.b ; 0 or 1. Toggle c2p lacing for double-buffered display

Mc2pToggleTriple
Buf.b ; 0, 1 or 2. Toggle c2p lacing for triple-buffered display

Mc2pToggle
Buffers.b,Buf.b ; 1, 2 or 3, and 0, 1 or 2. Toggle c2p lacing.

Mc2pWindow
c2pWindow#.w,OpWidth.w,OpHeight.w[,SourceBWidth.w[,Processor.b], ←↩

PlanarWidth.w,PlanarHeight.w]

Mc2pWindowWidth
(c2pWindowNumber.w) ; Returns width of c2pWindow

Mc2pWindowHeight
(c2pWindowNumber.w) ; Returns height of c2pWindow

Mc2pWindowNewHeight
c2pWindow#.w,NewHeight.w ; Change height of already defined c2p ←↩

object

Mc2p
[[c2pWindow#.w],Chunky.l],Planar.l ; Convert chunky to planar (←↩

Use Mc2pWindow first)

MFreec2pWindows
[Firstc2pWindow.w,Lastc2pWindow.w] ; Free/delete all/range of ←↩

c2pwindows

MFreec2pWindow
Free/delete a pre-existing c2pWindow

MUsec2pWindows
Mainc2pWindowNum.w[,Secondc2pWindowNum.w[,Thirdc2pWindowNum.w]] ; ←↩

Current to use

MUsec2pWindow
c2pWindowNumber.w ; Current to use

MUsedc2pWindow
; Returns currently used c2pWindow

Mildred 3 / 79

MAddrc2pWindow
(c2pWindowNumer.w} ; Returns address of c2pWindow structure

MCopyc2pWindow
MSourcec2pWindow.w,Destc2pWindow.w ; Copy definition-data only

shapes

MReserveShapes
[(]NumberOfShapes.w[,ShapeBankToUse.w][)] ; Reserve structure- ←↩

memory for Shapes

MAutoCookie
On/Off ; Autocreation of ByteForByte cookies

MAutoUseShapes
True/False ; Automatically ‘use’ new shapes. <>0=True

MAutoShapeWrap
On/Off ; Auto X&Y Handle-wrapping for Shapes

MAutoShapeClip
Status.b ; Auto-clip new Shapes. On/Off

MInitShape
[(]ShapeNumber.w,Width.w,Height.w[)] ; Allocmem for shape data

MShape
[(]ShapeNumber.w,Width.w,Height.w[)] ; Allocmem for shape data

MCludgeShape
ShapeNumber.w,Width.w,Height.w,Memory.l ; Cludge shape from ←↩

existing mem

MCludgeShapeStruct
[(]SourceShape.w,DestShape.w[)] ; Copy definition-data only

MShapeWindow
[(]SourceShape.w,DestShape.w,X.w,Y.w,Width.w,Height.w[)] ; Cludge ←↩

Shape within a Shape

MBitmapShape
[(]SourceBitmap.w,DestShape.w[)] ; Copy definition-data only

MCludgeCookie
ShapeNumber.w,Memory.l ; Cludge shape’s cookie from existing mem

MFreeShapes
[FirstShape.w,LastShape.w] ; Free/delete all/range of Shapes

MFreeShape
ShapeNumber.w ; Free/delete a pre-existing Shape

MShapeWidth
(ShapeNumber.w) ; Returns width of Shape

Mildred 4 / 79

MShapeHeight
(ShapeNumber.w) ; Returns height of Shape

MAddrShape
(ShapeNumber.w) ; Returns address of Shape structure

MHandle
ShapeNumber.w,XOffset.w,YOffset.w ; Set handle of Shape

MMidHandle
ShapeNumber.w ; Set handle to middle of Shape

MUseShapes
MainShapeNum.w[,SecondShapeNum.w[,ThirdShapeNum.w]] ; Current ←↩

Shape(s) to use

MUseShape
ShapeNumber.w ; Current Shape to use

MUsedShape
; Returns currently used Shape

MMakeCookies
[FirstShape.w,LastShape.w] ; Make cookies for all/range of shapes

MMakeCookie
ShapeNumber.w ; Make a cookie for a shape

MFreeCookies
[FirstShape.w,LastShape.w] ; Free all/range of cookies

MFreeCookie
ShapeNumer.w ; Free’s the Shape’s cookie

MShapeWrap
ShapeNumber.w,On/Off ; De/Activate X&Y Handle-Wrap for Shape

MCopyHandle
SourceShapeNumber.w,DestShapeNumber.w ; Copy a shape’s handle to ←↩

another shape

MAutoCookieXFlip
On/Off ; Auto X-Flip for Shape’s cookie

MAutoCookieYFlip
On/Off ; Auto Y-Flip for Shape’s cookie

MAutoCookieFlip
On/Off ; Auto X&Y Cookie-Flip for Shapes

MShapeXFlip
ShapeNumber.w ; Horizontally flip a Shape (see MAutoCookieFlip)

MShapeYFlip
ShapeNumber.w ; Vertically flip a Shape (see MAutoCookieFlip)

Mildred 5 / 79

MCookieXFlip
ShapeNumber.w ; Horizontally flip a Shape’s cookie

MCookieYFlip
ShapeNumber.w ; Vertically flip a Shape’s cookie

MShapeClip
ShapeNumber.w[,X.w,Y.w,Width.w,Height.w][,Active] ; Active=On/Off ←↩

. Define Shape’s clip window

MGetaShape
ShapeNumber.w,X.w,Y.w,Width.w,Height.w[,Block?,StencilIsCookie?] ←↩

; Grab shape from bitmap

MUseShapeBank
BankNumber.w ; Current shape bank, 0..31

MShapePtr
[Xpos.w,Ypos.w][,ShapeNumber.w] ; Return data address calculated ←↩

using shape [and coords]

MCookiePtr
[Xpos.w,Ypos.w][,ShapeNumber.w] ; Return address calculated using ←↩

cookie [and coords]

bitmaps

MReserveBitmaps
[(]NumberOfBitmaps.w[)] ; Reserve structure-memory for Bitmaps

MAutoStencil
On/Off ; Autocreation of ByteForByte stencils

MAutoUseBitmaps
True/False ; Automatically ‘use’ new bitmaps. <>0=True

MAutoBitmapWrap
On/Off ; Auto X&Y Handle-Wrapingp for Bitmaps

MAutoBitmapClip
Status.b ; Auto-clip new Bitmaps. On/Off

MBitmap
[(]BitmapNumber.w,Width.w,Height.w[)] ; Allocmem for bitmap data

MCludgeBitmap
BitmapNumber.w,Width.w,Height.w,Memory.l ; Cludge bitmap from ←↩

existing mem

MCludgeBitmapStruct
[(]SourceBitmap.w,DestBitmap.w[)] ; Copy definition-data only

MBitmapWindow
[(]SourceBitmap.w,DestBitmap.w,X.w,Y.w,Width.w,Height.w[)] ; ←↩

Cludge Bitmap within a Bitmap

Mildred 6 / 79

MShapesBitmap
[(]SourceShape.w,DestBitmap.w[)] ; Copy definition-data only

MCludgeStencil
BitmapNumber.w,Memory.l ; Cludge bitmap’s stencil from existing ←↩

mem

MFreeBitmaps
[FirstBitmap.w,LastBitmap.w] ; Free/delete all/range of Bitmaps

MFreeBitmap
BitmapNumber.w ; Free/delete a pre-existing Bitmap

MBitmapWidth
(BitmapNumber.w) ; Returns width of Bitmap

MBitmapHeight
(BitmapNumber.w) ; Returns height of Bitmap

MAddrBitmap
(BitmapNumber.w) ; Returns address of Bitmap structure

MBitmapOrigin
BitmapNumber.w,XOffset.w,YOffset.w ; Set origin of Bitmap

MBitmapMidOrigin
BitmapNumber.w ; Set origin to middle of Bitmap

MUseBitmaps
MainBitmapNum.w[,SecondBitmapNum.w[,ThirdBitmapNum.w]] ; Current ←↩

Bitmap to use

MUseBitmap
BitmapNumber.w ; Current Bitmap to use

MUsedBitmap
; Returns currently used Bitmap

MMakeStencils
[FirstBitmap.w,LastBitmap.w] ; Make stencils for all/range of ←↩

bitmaps

MMakeStencil
BitmapNumber.w ; Make a stencil for a bitmap

MFreeStencils
[FirstBitmap.w,LastBitmap.w] ; Free all/range of stencils

MFreeStencil
BitmapNumber.w ; Free’s the Bitmap’s stencil

MBitmapWrap
BitmapNumber.w,On/Off ; De/Activate X&Y Handle-Wrap for Bitmap

MCopyOrigin
SourceBitmapNumber.w,DestBitmapNumber.w ; Copy a bitmap’s origin ←↩

to another bitmap

Mildred 7 / 79

MAutoStencilXFlip
On/Off ; Auto X-Flip for Bitmap’s stencil

MAutoStencilYFlip
On/Off ; Auto Y-Flip for Bitmap’s stencil

MAutoStencilFlip
On/Off ; Auto X&Y Stencil-Flip for Bitmaps

MBitmapXFlip
BitmapNumber.w ; Horizontally flip a Bitmap (see MAutoStencilFlip ←↩

)

MBitmapYFlip
BitmapNumber.w ; Vertically flip a Bitmap (see MAutoStencilFlip)

MStencilXFlip
BitmapNumber.w ; Horizontally flip a Bitmap’s stencil

MStencilYFlip
BitmapNumber.w ; Vertically flip a Bitmap’s stencil

MBitmapClip
BitmapNumber.w[,X.w,Y.w,Width.w,Height.w][,Active] ; Active=On/ ←↩

Off. Define Bitmap’s clip window

MGetaBitmap
BitmapNumber.w,X.w,Y.w,Width.w,Height.w[,Block?,CookieIsStencil?] ←↩

; Grab bitmap from shape

MBitmapPtr
[Xpos.w,Ypos.w][,BitmapNumber.w] ; Return data address calculated ←↩

using bitmap [and coords]

MStencilPtr
[Xpos.w,Ypos.w][,BitmapNumber.w] ; Return address calculated ←↩

using stencil [and coords]

scrolls

MScroll
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; Copy ←↩

graphic

MScrollShape
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Copy ←↩

graphic

MScrollStencil
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; Copy ←↩

stencil to stencil only

MScrollCookie
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Copy ←↩

cookie to cookie only

Mildred 8 / 79

MScrollBitmapToShape
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; Copy ←↩

bitmap to shape

MScrollShapeToBitmap
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Copy ←↩

shape to bitmap

MScrollStencilToCookie
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; Copy ←↩

stencil to cookie

MScrollCookieToStencil
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Copy ←↩

cookie to stencil

MMaskScroll
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; Copy ←↩

bitmap graphic with stencil-cut

MMaskScrollShape
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Copy ←↩

shape graphic with cookie-cut

MMaskScrollStencil
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w];Copy ←↩

stencil2stencil & stencil-cut

MMaskScrollCookie
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Copy ←↩

cookie to cookie & cookie-cut

MMaskScrollBitmapToShape
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; Copy ←↩

bitmap to shape & cut

MMaskScrollShapeToBitmap
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Copy ←↩

shape to bitmap & cut

MMaskScrollStencilToCookie
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ;Copy ←↩

stencil2cookie & cut

MMaskScrollCookieToStencil
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Copy ←↩

cookie2stencil & cut

MBlockScroll
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; ←↩

BlockCopy graphic

MBlockScrollShape
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; ←↩

BlockCopy graphic

Mildred 9 / 79

MBlockScrollStencil
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; ←↩

BlockCopy stencil to stencil

MBlockScrollCookie
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; ←↩

BlockCopy cookie to cookie

MBlockScrollBitmapToShape
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; ←↩

BlockCopy bitmap to shape

MBlockScrollShapeToBitmap
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; ←↩

BlockCopy shape to bitmap

MBlockScrollStencilToCookie
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w]; ←↩

BlockCopy stencil2cookie

MBlockScrollCookieToStencil
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; ←↩

BlockCopy cookie2stencil

MSScroll
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; Copy ←↩

bm 2 bm and st 2 st

MSScrollShape
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Copy sh ←↩

2 sh and ck 2 ck

MSScrollBitmapToShape
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; Copy ←↩

bm 2 sh and st 2 ck

MSScrollShapeToBitmap
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Copy sh ←↩

2 bm and ck 2 st

MSMaskScroll
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; ←↩

Stencil-Copy bm 2 bm and st 2 st

MSMaskScrollShape
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Cookie- ←↩

Copy sh2sh and ck2ck

MSMaskScrollBitmapToShape
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ;Sten- ←↩

Copy bm2sh&st2ck

MSMaskScrollShapeToBitmap
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Cook- ←↩

Copy sh2bm&ck2st

MSBlockScroll

Mildred 10 / 79

X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; Block- ←↩
Copy bm 2 bm and st 2 st

MSBlockScrollShape
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Block- ←↩

Copy sh2sh and ck2ck

MSBlockScrollBitmapToShape
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w]; ←↩

BlockCopy bm2sh&st2ck

MSBlockScrollShapeToBitmap
X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w];BlockCopy ←↩

sh2bm&ck2st

MSScrollCut
On/Off ; 0=Paste stencil/cookie, <>0=Cut using stencil/cookie

MMaskScrollMode
Mode.w ; CookieMode/EraseMode/InvMode/SolidMode/MColourMode/ ←↩

MReMapMode/MSimpleReMapMode

MSMaskScrollMode
Mode.w ; CookieMode/EraseMode/InvMode/SolidMode/MColourMode/ ←↩

MReMapMode/MSimpleReMapMode

drawing

MInk
Colour.b ; Set what colour to assume as currently used. 0..255

MCls
[Colour] Clear a bitmap to colour 0 or the specified colour

MClsShape
[Colour] Clear a shape to colour 0 or the specified colour

MClsStencil
[Colour] Clear a stencil to colour 0 or the specified colour

MClsCookie
[Colour] Clear a cookie to colour 0 or the specified colour

MPlot
Xpos.w,Ypos.w[,Colour] ; Plot a single pixel in the bitmap [to ←↩

the specified colour]

MPlotShape
Xpos.w,Ypos.w[,Colour] ; Plot a single pixel in the shape [to the ←↩

specified colour]

MPlotStencil
Xpos.w,Ypos.w[,Colour] ;Plot a single pixel in the stencil to * ←↩

represent* the [specified] colour

MPlotCookie

Mildred 11 / 79

Xpos.w,Ypos.w[,Colour] ; Plot a single pixel in the cookie to * ←↩
represent* the [specified] colour

MPoint
(Xpos.w,Ypos.w) ; Return the colour of a single pixel in a bitmap

MPointShape
(Xpos.w,Ypos.w) ; Return the colour of a single pixel in a shape

MPointStencil
(Xpos.w,Ypos.w) ; Return the status of a single pixel in a ←↩

stencil. -1=Data, 0=Background

MPointCookie
(Xpos.w,Ypos.w) ; Return the status of a single pixel in a cookie ←↩

. -1=Data, 0=Background

MBoxF
Xpos.w,Ypos.w,Xpos2.w,Ypos2.w[,Colour] Draw a filled box in a ←↩

bitmap [to specified colour]

MBoxFShape
Xpos.w,Ypos.w,Xpos2.w,Ypos2.w[,Colour] Draw a filled box in a ←↩

shape [to specified colour]

MBoxFStencil
Xpos.w,Ypos.w,Xpos2.w,Ypos2.w[,Colour] Draw a filled box in a ←↩

stencil [to specified colour]

MBoxFCookie
Xpos.w,Ypos.w,Xpos2.w,Ypos2.w[,Colour] Draw a filled box in a ←↩

cookie [to specified colour]

MBox
Xpos.w,Ypos.w,Xpos2.w,Ypos2.w[,Colour] Draw an unfilled box in a ←↩

bitmap [to specified colour]

MBoxShape
Xpos.w,Ypos.w,Xpos2.w,Ypos2.w[,Colour] Draw an unfilled box in a ←↩

shape [to specified colour]

MBoxStencil
Xpos.w,Ypos.w,Xpos2.w,Ypos2.w[,Colour] Draw an unfilled box in a ←↩

stencil [to specified colour]

MBoxCookie
Xpos.w,Ypos.w,Width.w,Height.w[,Colour] Draw an unfilled box in a ←↩

cookie [to specified colour]

MLine
[Xpos.w,Ypos.w,]Xpos2.w,Ypos2.w[,Colour.b] ;Draw a line from X1, ←↩

Y1 to X2,Y2 in a Bitmap [in Colour]

MLineShape
[Xpos.w,Ypos.w,]Xpos2.w,Ypos2.w[,Colour.b] ;Draw a line from X1, ←↩

Y1 to X2,Y2 in a Shape, [in Colour]

Mildred 12 / 79

MLineStencil
[Xpos.w,Ypos.w,]Xpos2.w,Ypos2.w[,Colour.b];Draw a line from X1,Y1 ←↩

to X2,Y2 in a stencil, [in Col]

MLineCookie
[Xpos.w,Ypos.w,]Xpos2.w,Ypos2.w[,Colour.b] ;Draw a line from X1, ←↩

Y1 to X2,Y2 in a cookie, [in Col]

tiles

MTile16x16
[ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit 16x16 shape to bitmap, ←↩

size must be 16x16, align x/y

MTile32x32
[ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit 32x32 shape to bitmap, ←↩

size must be 32x32, align x/y

MSTile16x16
[ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit 16x16 shape&cook 2 ←↩

bitmap, size 16x16, align x/y

MSTile32x32
[ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit 32x32 shape&cook 2 ←↩

bitmap, size 32x32, align x/y

MSTile16x16Store
[ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit 16x16 shape&cook 2 ←↩

bitmaps, size 16x16, align x/y

MSTile32x32Store
[ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit 32x32 shape&cook 2 ←↩

bitmaps, size 32x32, align x/y

MTile16x16Store
[ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit 16x16 shape to 2 ←↩

bitmaps, size 16x16, align x/y

MTile32x32Store
[ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit 32x32 shape to 2 ←↩

bitmaps, size 32x32, align x/y

queues

MReserveQueues
[(]NumberOfQueues.w[)] ; Reserve structure-memory for Queues

MAutoUseQueues
True/False ; Automatically ‘use’ new Queues. <>0=True

MQueue
[(]QueueNumber.w,NumberOfItems.w[)] ; Allocmem for Queue list ←↩

items

MQDummy

Mildred 13 / 79

[Queue.w,]Xpos.w,Ypos.w,Width.w,Height.w ; Add an item to a queue ←↩
without having to do a blit

MUnQueue
QueueNumber.w[,BitmapNumber.w] ; UnQueue the queued objects and ←↩

flush the queue

MUnQueueRange
QueueNumber.w,FirstItem.w,LastItem.w[,BitmapNumber.w] ; UnQueue a ←↩

range of queued objects

MFlushQueue
QueueNumber.w ; Empties the queue to contain no items

MFreeQueues
[FirstQueue.w,LastQueue.w] ; Free/delete all/range of Queues

MFreeQueue
QueueNumber.w ; Free/delete a pre-existing Queue

MAddrQueue
(QueueNumber.w} ; Returns address of Queue structure

MUseQueues
MainQueueNum.w[,SecondQueueNum.w[,ThirdQueueNum.w]] ; Current to ←↩

use

MUseQueue
QueueNumber.w ; Current to use

MUsedQueue
; Returns currently used Queue

blits

MColourMode
;Returns value 4 which represents ‘colour’ mode in the blit modes

MReMapMode
;Returns value 5 which represents ‘ReMap’ mode in the blit modes ←↩

(uses current 2-dimensional table)

MSimpleReMapMode
;Returns value 6 which is ‘SimpleReMap’ mode in blit modes (uses ←↩

current 1-dimensional table)

MBlitMode
Mode.w ; CookieMode/EraseMode/InvMode/SolidMode/MColourMode/ ←↩

MReMapMode/MSimpleReMapMode

MBlit
[ShapeNumber.w,]Xpos.w,Ypos,w ; Blit shape to bitmap, any coords

MBlock
[ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit shape to bitmap, align ←↩

Xpos and width in multiples of 16!

Mildred 14 / 79

MQBlitMode
Mode.w ; CookieMode/EraseMode/InvMode/SolidMode/MColourMode/ ←↩

MReMapMode/MSimpleReMapMode

MQBlit
[[Queue.w,]ShapeNumber.w,]Xpos.w,Ypos,w ; QBlit shape to bitmap, ←↩

any coords

MQBlock
[[Queue.w,]ShapeNumber.w,]Xpos.w,Ypos.w ; QBlock-blit shape 2 ←↩

bitmap, align Xpos & width in mult of 16

MSBlitMode
Mode.w ; CookieMode/EraseMode/InvMode/SolidMode/MColourMode/ ←↩

MReMapMode/MSimpleReMapMode

MSBlit
[ShapeNumber.w,]Xpos.w,Ypos,w ; Blit shape to bitmap and cookie ←↩

to stencil, any coords

MSBlock
[ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit shape to bitmap & ←↩

cookie 2 stencil, Xpos&Width in 16’s

MSBlitCut
On/Off ; 0=Paste stencil/cookie, <>0=Cut using stencil/cookie

MQSBlitMode
Mode.w ; CookieMode/EraseMode/InvMode/SolidMode/MColourMode/ ←↩

MReMapMode/MSimpleReMapMode

MQSBlit
[[Queue.w,]ShapeNumber.w,]Xpos.w,Ypos,w ; QBlit shape to bitmap ←↩

and cookie to stencil, any coords

MQSBlock
[[Queue.w,]ShapeNumber.w,]Xpos.w,Ypos.w ; QBlock-blit shape 2 ←↩

bitmap, Xpos&width mult of 16

MQSBlitCut
On/Off ; 0=Paste stencil/cookie, <>0=Cut using stencil/cookie. ←↩

Adds entry to queue

tables

MReserveTables
[(]NumberOfTables.w[)] ; Reserve structure-memory for Tables

MAutoUseTables
True/False ; Automatically ‘use’ new Tables. <>0=True

MTable
[(]TableNumber.w,SizeInBytes.l[)] ; Allocmem for Table list items

MFreeTables

Mildred 15 / 79

[FirstTable.w,LastTable.w] ; Free/delete all/range of Tables

MFreeTable
TableNumber.w ; Free/delete a pre-existing Table

MAddrTable
(TableNumber.w} ; Returns address of Table structure

MFlushTable
TableNumber.w ; Empties the table to contain no items

MUseTables
MainTableNum.w[,SecondTableNum.w[,ThirdTableNum.w]] ; Current to ←↩

use

MUseTable
TableNumber.w ; Current to use

MUsedTable
; Returns currently used Table

MTablePtr
[TableNum.w] ; Returns pointer to base of the table itself

transfer

MPlanar16ToBitmap
BitmapNum.w,PlanarAddr.l[,OpWidth.w,OpHeight.w,PlanarWidth.w, ←↩

PlanarHeight.w] ; Convert p2c

MPlanar16ToShape
ShapeNum.w,PlanarAddr.l[,OpWidth.w,OpHeight.w,PlanarWidth.w, ←↩

PlanarHeight.w] ; Convert p2c

MReMap
[Colour#0.b,Colour#1.b,BitmapNum.w] *or* [RemapTable.l[,BitmapNum ←↩

.w]] ; Remap #0 to #1 or with table

MReMapShape
[Colour#0.b,Colour#1.b,ShapeNum.w] *or* [RemapTable.l[,ShapeNum.w ←↩

]] ; Remap #0 to #1 or with table

MReMapUsingShape
RemapTable.l[,SourceShapeNum.w[,DestBitmapNum.w]] ;Merge shape to ←↩

bitmap using 2xWay Table

MReMapShapeUsingShape
RemapTable.l[,SourceShapeNum.w[,DestShapeNum.w]] ;Merge shape to ←↩

shape using 2xWay Table

MPictureDissolveIn
PictureBitmapNum.w,Colour.b ; Do a picture-based colour-number ←↩

dissolve-in of a bitmap

particles

Mildred 16 / 79

MParticleMode
Mode.w ; MColourMode, MSimpleReMapMode or MReMapMode - to use in ←↩

particle plot/draw

MPlotParticles
CoordinateList.l,NumPoints.l[,Colour.b] ; Plot lots of points ←↩

from an X.w,Y.w table of coords

MGrabParticles
CoordinateList.l,NumPoints.l,Buffer.l ; Grab lots of points from ←↩

X.w,Y.w table, into buffer mem

MDrawParticles
CoordinateList.l,NumPoints.l,Buffer.l ; Draw lots of previously ←↩

grabbed points, using X.w,Y.w’s

MGrabParticlesAndPlot
CoordinateList.l,NumPoints.l,Buffer.l[,Colour.b]; Grabs points X. ←↩

w,Y.w to buffer & plots

MAddToParticles
CoordinateList.l,NumPoints.l,IncA.l[,IncB.l] ; Add X.w,Y.w to X.w ←↩

,Y.w items in particle list

MReboundParticles
CoordinateList.l,NumPoints.l,DirectionList.l,DetectSize.w ; ←↩

Bounce particles off edges

MWrapParticles
CoordinateList.l,NumPoints.l ; Bring particles in from opposite ←↩

edge to which they left

MAddXYToParticles
CoordinateList.l,NumPoints.l,XToAdd.w,YToAdd.w ; Add constants to ←↩

all particles

MPlotParticlesA
AddressList.l,NumPoints.l[,Colour.b] ; Plot lots of points from ←↩

an Ptr.l table of coords

MGrabParticlesA
AddressList.l,NumPoints.l,Buffer.l ; Grab lots of points from Ptr ←↩

.l table, into buffer mem

MDrawParticlesA
AddressList.l,NumPoints.l,Buffer.l ; Draw lots of previously ←↩

grabbed points, using Ptr.l’s

MGrabParticlesAndPlotA
AddressList.l,NumPoints.l,Buffer.l[,Colour.b] ; Grabs points Ptr. ←↩

l to buffer & plots

MAddToParticlesA
AddressList.l,NumPoints.l,IncA.l[,IncB.l] ; Add Ptr.l to Ptr.l ←↩

items in particle list

Mildred 17 / 79

MWrapParticlesA
CoordinateList.l,NumPoints.l ; Bring particles in from opposite ←↩

edge to which they left

MAddXYToParticlesA
CoordinateList.l,NumPoints.l,ValueToAdd.l ; Add constant to all ←↩

particle pointers

MPlotParticlesQ
CoordinateList.l,NumPoints.l[,Colour.b] ; Plot lots of points ←↩

from an X.q,Y.q table of coords

MGrabParticlesQ
CoordinateList.l,NumPoints.l,Buffer.l ; Grab lots of points from ←↩

X.q,Y.q table, to buffer mem

MDrawParticlesQ
CoordinateList.l,NumPoints.l,Buffer.l ; Draw previously grabbed ←↩

points, using X.q,Y.q’s

MGrabParticlesAndPlotQ
CoordinateList.l,NumPoints.l,Buffer.l[,Colour.b];Grabs points X.q ←↩

,Y.q to buffer & plots

MAddToParticlesQ
CoordinateList.l,NumPoints.l,IncA.l[,IncB.l] ; Add X.q,Y.q to X.q ←↩

,Y.q items in particle list

MReboundParticlesQ
CoordinateList.l,NumPoints.l,DiectionList.l,DetectSize.w ; Bounce ←↩

particles off edges

MWrapParticlesQ
CoordinateList.l,NumPoints.l ; Bring particles in from opposite ←↩

edge to which they left

MAddXYToParticlesQ
CoordinateList.l,NumPoints.l,XToAdd.q,YToAdd.q ; Add constants to ←↩

all particles

others

MGenericPtr
Xpos.w,Ypos.w,BaseAddress.l,RowWidth.w ; Calculate and return ←↩

address based on inputs

1.2 Mildred information

Mildred is a chunkygraphics library for Blitz Basic 2, providing extensive
chunky-format graphics capabilities for your Blitz software. The library, its
documentation and accompanying programs are Copyright (c) 1998-1999 Paul West.
The library itself is also Copyright (c) 1998-1999 Pagan Software.

Mildred 18 / 79

Please refer to the archive containing the old on-line html documentation in
order to obtain an in-depth manual regarding specifically the chunky-to-planar
related commands from the library.

Primarily, have runtime error-checking ON while figuring out how things work as
there is extensive checking performed throughout the system and the messages will
help you to avoid crashes and to supply the correct parameters. Once the program
is running well and won’t fall over, turn runtime error-checking off. Your final
executable should (highly recommended) be compiled without runtime errorchecking,
as the runtime errorchecking routines do gobble up a fair amount of time,
especially if you are calling a lot of small routines like plotting lots of
pixels.

In Mildred, shapes and bitmaps are internally identical, which also means that
bitmaps have stencils in the same way that shapes have cookies. Also note that
ALL Mildred commands begin with the identifying letter ‘M’. There are 32 shape
banks. ‘Current’ shapes refer to the currently used bank, and operations accross
banks are not possible.

As of v1.23, space is reserved for default amounts of objects so that for most
smaller projects you do not need to use the MReserveXXX instructions. By default,
there are 20 c2pWindows, 20 chunky Bitmaps, 100 chunky Shapes and 20 Queues. If
you want to use more than this you should reserve some specifically. The objects
that are reserved by default consume less than 10k of fastram each time your
program is run.

In v1.27 the ordering of lookup tables for the MReMapUsingShape and
MReMapShapeUsingShape commands has been reversed. This is to provide consistency
with the new MReMap blit mode, which makes it possible to reduce the size of
tables when a shape contains a lower number of colours (starting from 0). Also
in v1.27 a default amount of 20 chunky Table objects will be allocated at
runtime.

As of v1.36 the lib will automatically check for what cpu is available from
ExecBase\AttnFlags and will make automatic calls to MCPU, Mc2pCPUmode and
M040c2pUsage. MCPU will be set to whatever cpu is detected, and this will serve
as the default unless you specifically use MCPU in your program. Mc2pCPUmode will
be set to a default that best suits the detected cpu. If an 040 or higher is not
present, M040c2pUsage will be switched off. M040c2pUsage overrides Mc2pCPUmode
and it used to be possible to assume that the 040Usage was always on. This
assumption is no longer valid but hopefully if you use MProcessor or Processor to
return a value to pass as the cpu to use, it will be in accordance with the value
that was internally detected so if an 040 is available it shouldn’t have switched
of the M040c2pUsage. The end result should hopefully be the same for the
programmer unless you attempt to ask for a specific CPU that may not equate to
the cpu that is actually available, in which case care must be taken to switch
M040c2pUsage on if necessary.

Also as of v1.36 the MProcessor function has been included to remove reliable on
the old blitz ‘Processor’ instruction and it is recommended that this be used.
Values returned range from 0 to 6 rather than 0..4, although the lib will mostly
assume that anything higher than 4 means to use the 040+-only routines.

As of v1.38 some previously created tokens were removed and merged in with others
to provide a simpler interface and reduce the number of tokens in the library.
Mainly the only tokens affected are the particle-animation ones, but also
MProcessor. If you had used these tokens prior to version 1.38, it is recommended

Mildred 19 / 79

that you save your program as ascii text, THEN install the new version of
Mildred, and then reload your ascii-format program into blitz so that it
tokenises properly. If you attempt to save off the ascii text after installing
the library the tokens would be corrupt when you tried to load it back in. If
unsure, keep a temporary backup of your old Mildred.obj library file. Note that
some tokens have been removed, such as MAddXToParticles[Q] and
MAddYToParticles[Q], with their functionality being implemented into
MAddXYToParticles[Q] as optimised routines to use when XToAdd or YToAdd are 0.
Also the MAdd2To.. family of commands have been merged into the originally single
MAddTo.. family which now allows you to specify a second increment list as an
optional parameter.

1.3 Library History

This is an account of the library history since its release.

v1.1 - First public release
v1.11 - Fixed bug in MUseShapeBank and altered ShapesTotal size to word as it was ←↩

incorrectly a longword
- Fixed bug in the errorchecking of Mc2pCPUmode that was checking d3 instead ←↩

of d0
v1.12 - Fixed bug in MUnQueue that would only do two lines of code if wrapping was ←↩

active, but should have been done always
v1.13 - MBoxF, MBoxFShape, MBoxFStencil and MBoxFCookie added

- MBox, MBoxShape, MBoxStencil and MBoxCookie added
v1.14 - MPlanar16ToBitmap, MPlanar16ToShape added
v1.15 - Planar-to-chunky converter optimised further using addx and reverse ←↩

bitplane order, twice as fast as roxr.b #n,dn
- MGenericPtr added
- A shape’s handle is unconditionally added (actually subtracted) to Xpos, ←↩

Ypos in shape-to-bitmap type blits (MBlit etc)
v1.16 - Fixed small bug in !PerformPoint macro, d6.l should have been d6.w.

- Fixed small but ineffective bug in MPlotCookie, d6.l should have been d6.w
v1.17 - Added MCludgeCookie and MCludgeStencil, also needed to add two macros

- Fixed bug in macro used by MCludgeCookie and MCludgeStencil, as it was not ←↩
setting ‘SHere’ to 0 to indicate cludge.

v1.18 - Added MUnQueueRange for unqueuing a range of items and without flushing ←↩
the queue

v1.19 - Fixed bug in data for shape banks, was using structures of 8 bytes but ←↩
only were 6 bytes in mem

- Fixed bug in MReserveShapes, was shifting bank number 8 places instead of ←↩
3

v1.2 - Added MReMap and MReMapShape
v1.21 - Fixed bug in macro DeallocStencil, was killing the whole object
v1.22 - Commented-out line in MShapeClip and MBitmapClip to make X leftedge ←↩

unaligned (width is still multiple of 4)
- Commented-out line in Macro CludgeResourceWindow to make X leftedge ←↩

unaligned (width of window is still multiple of 4)
v1.23 - Added mode to MBlit so that if a cookie is not present it will just blit ←↩

the graphic in ‘replace’-mode (unmasked)
- Minor pipeline improvement in macros !PerformPlot and !PerformPoint
- Added code to the init routine to reserve default amounts of all objects ←↩

at runtime (doesn’t need much mem)
- Added ‘BankToUse’ parameter to MReserveShapes so that you don’t have to do ←↩

a seperate MUseShapeBank

Mildred 20 / 79

- Changed BoxF and Box routines to use X2,Y2 instead of Width,Height and had ←↩
to add macro CCheckWindowFits4

v1.24 - Made the colour parameter in MPlot,MPlotShape,MPlotStencil and MPlotCookie ←↩
optional, assuming 0 if not specified
- *Partially* Added MLine, MLineShape, MLineStencil and MLineCookie
- Modified shapebank-related routines to provide 32 shape banks numbered ←↩

0..31, instead of 0..9.
- Fixed bugs in macros ShuffleRegs1, ShuffleRegs2 and ShuffleRegs3

v1.25 - Addred MReMapUsingShape and MReMapShapeUsingShape
v1.26 - Optimised routine PerformReMapUsing for slight speed gain

- Optimised routine PerformReMap for 25% speed gain in table mode
- Fixed bug in macro CCheckWindowFits4, which affected runtime errorchecking ←↩

of MBox/MBoxF and related routines
v1.27 - Added MInk for setting a currently-used pen colour. Defaults to 1 which is ←↩

a bit more logical than 0
- Added MColourMode function to accompany CookieMode/SolidMode etc, but for ←↩

‘colour’ drawing mode in blits
- Added ‘colour’ mode to MBlit, MQBlit, MSBlit, MQSBlit and MMaskScroll ←↩

routines
- Removed redundant instruction in routine PerformBlit3’s loop, for cookie- ←↩

mode stencil-blits (slight speedup)
- Adjusted graphics routines to use the ink colour if assuming which colour ←↩

to use, rather than 0
- Further optimised routine PerformReMapUsing for slight speedup (about 1-2 ←↩

fps)
- Changed order of tables being used for MReMap[Shape]UsingShape, for ←↩

consistency with ‘MReMapMode’ blit mode
- Added support for new Table objects
- Added MReserveTables, MFreeTables, MFreeTable, MAddrTable, MTable
- Added MFlushTable, MAutoUseTables, MUseTables, MUseTable, MUsedTable
- Added MTablePtr, MReMapMode
- Added new blit mode ‘ReMap’ to the MBlit, MQBlit, MSBlit, MQSBlit and ←↩

MMaskScroll routines for table-based remapping
v1.28 - Optimised MPictureDissolveIn for speed gain (a good few fps)

- Added MSimpleReMapMode
- Added new blit mode ‘SimpleReMap’ to the MBlit, MQBlit, MSBlit, MQSBlit ←↩

and MMaskScroll routines for 1-dim remapping
- Fixed bug in definitions, MPointStencil and MPointCookie were defined as ←↩

statements, but should have been functions
- Changed the !PerformPoint macro to initialise d0 before grabbing the byte, ←↩

in case it causes corrupt return value
v1.29 - Optimised non-cut routine used by MSMaskScrolls (PerformGenericBlit6[b])

- Slight optimisation to non-cut plain copy routine used by M[Q]SBlits (←↩
PerformBlit2)

- Finished MLine, MLineShape, MLineStencil and MLineCookie
v1.30 - Redirected routine PerformGenericBlit3[b] to use PerformBlit1[b], to save ←↩

code redundancy, and made gen3b into 1b
- Added MSMaskScrollMode to support blit modes for MSMaskScrolls (previously ←↩

only MMaskScrolls)
- Redirected routine PerformGenericBlit6[b] to use PerformBlit2[b], to ←↩

prepare for shared sblit blit-mode code
- Redirected routine PerformGenericBlit9[b] to use PerformBlit3[b], to ←↩

prepare for shared sblit cut blit-mode code
- Completed support for MSMaskScrolls in ‘copy’ mode with blit modes, by ←↩

adding PerformBlit2b (2 backwards)
- Completed support for MSMaskScrolls in ‘cut’ mode with blit modes, by ←↩

adding PerformBlit3b (3 backwards)

Mildred 21 / 79

- Modified runtime errorchecking routines for MSMaskScrolls to check that ←↩
tables are available in M[Simple]ReMapMode

v1.31 - Modified MScroll routines to support any width (non multiple, as low as 1) ←↩
.

- Modified MSScroll routines to support any width (non multiple, as low as ←↩
1) in both ‘paste’ and ‘cut’ modes.

v1.32 - Fixed bugs in routine PerformBlit2[b] for non-cut output to stencil. Some ←↩
OR’s should have been AND’s, and vice versa.

v1.33 - Fixed bug in routine PerformLine, sometimes d5 was plotted rather than d6
v1.34 - Added MPlotParticles for plotting list of pixels to a colour. List items ←↩

are X.w,Y.w
- Added MGrabParticles for grabbing list of pixels to a buffer. List items ←↩

are X.w,Y.w. Buffer is Pixel.b’s
- Added MDrawParticles for drawing grabbed list of pixels from a buffer. ←↩

List items are X.w,Y.w. Buffer is Pixel.b’s
- Added MGrabParticlesAndPlot for grabbing and plotting pixels to a colour. ←↩

List items are X.w,Y.w. Buffer is Pixel.b’s
- Fixed bug in initialisation, auto-clip for bitmaps and shapes shouldn’t ←↩

have been automatically On!
- Added MPlotParticlesA, MGrabParticlesA, MDrawParticlesA, ←↩

MGrabParticlesAndPlotA, for actual-address list items
- Added MPlotParticlesQ, MGrabParticlesQ, MDrawParticlesQ, ←↩

MGrabParticlesAndPlotQ, for X.q,Y.q items [*16*.16][*16*.16]
- Added MAddToParticles, MAddToParticlesA, MAddToParticlesQ, for adding ←↩

values to particle list items
- Added MAdd2ToParticles, MAdd2ToParticlesA, MAdd2ToParticlesQ, for more ←↩

efficient multiple adds to list items
v1.35 - Added MWrapParticles, MWrapParticlesA, MWrapParticlesQ, to wrap coords ←↩

around edges of bitmap/clip (within reason)
- Fixed bugs in clip routine of MAddToParticlesQ and MAdd2ToParticlesQ, ←↩

offsets and adders and adding were wrong
- Fixed bugs in clip routine of MWrapParticles and MWrapParticlesQ, 2 ←↩

conditional branches to loop missing
v1.36 - Added MReboundParticles and MReboundParticlesQ, for bouncing particless ←↩

off the edges. No ‘A’ version, not possible
- Fixed bugs in MLine, MLineShape, MLineStencil, MLineCookie, short version ←↩

used wrong colour
- Added MProcessor function, to replace blitz’s ‘Processor’ instruction and ←↩

support 060
- Modified various cpu-related routines (c2p and 040 choices) to support ←↩

possible 060 cpu number
- Modified init routine to check for cpu availability and set MCPU, ←↩

Mc2pCPUmode and M040c2pUsage to appropriate defaults
v1.37 - Added MAddXYToParticles and MAddXYToParticlesQ for adding X and Y ←↩

constants to X and Y components in a particle list
- Added MAddXYToParticlesA to add constant value to list of Ptr.l particles
- Added MAddXToParticles, MAddYToParticles, MAddXToParticlesQ and ←↩

MAddYToParticlesQ for further adding to particle lists
v1.38 - Removed unnecessary code from MPlotParticlesA, MGrabParticlesA, ←↩

MDrawParticlesA and MGrabParticlesAndPlotA
- Added MParticleMode to choose MColourMode, MReMapMode or MSimpleReMapMode ←↩

for particle plot/draw
- Added MSimpleReMapMode and MReMapMode support to MPlotParticles, ←↩

MPlotParticlesA and MPlotParticlesQ (clipping also!)
- Added MSimpleReMapMode and MReMapMode support to MDrawParticles, ←↩

MDrawParticlesA and MDrawParticlesQ (clipping also!)

Mildred 22 / 79

- Added MSimpleReMapMode and MReMapMode support to MGrabParticlesAndPlot[A/Q ←↩
] for remap plot and normal grab (and clip!)

- Merged MAdd2ToParticles[A/Q] into extension of MAddToParticles[A/Q] to ←↩
make friendlier interface & cut down on tokens

- Token order has been compromised due to removal of MAdd2ToParticles, ←↩
MAdd2ToParticlesA and MAdd2ToParticlesQ !!!

- Fixed errornumber bugs in errorchecking routines of MShapePtr and ←↩
MCookiePtr. Was Error28, should have been Error27

- Added support to MBitmapPtr, MStencilPtr, MShapePtr and MCookiePtr to ←↩
assume currently used objects if no params

- Merged MAddXToParticles[Q] into special-case routine of MAddXYToParticles[←↩
Q] (called if Y is 0)

- Merged MAddYToParticles[Q] into special-case routine of MAddXYToParticles[←↩
Q] (called if X is 0)

- Token order has been compromised due to removal of MAddXToParticles[Q] and ←↩
MAddYToParticles[Q] !!!

1.4 mc2prowlacing

Mc2pRowLacing State.b ; Toggle row-lacing in c2p On/Off. NonZero=On

Switches the row-interlacing feature of the c2p sytem On or Off. Using this
command will affect the information held in any c2pWindow objects created
afterwards, and will cause the c2p and other elements of the system to behave in
the necessary way for supporting row-interlaced output. Using this command also
resets the even/odd frame to even (0).

1.5 mc2pcolumnlacing

Mc2pColumnLacing State.b ; Toggle column-lacing in c2p On/Off

Switches the column-interlacing feature of the c2p system On or Off. A column is
32 pixels wide. Using this will affect the information held in any c2pWindow
objects created afterwards, and will cause the c2p and other elements of the
system to behave in a way necessary for supporting column-interlaced output.
Using this command also resets the even/odd frame to even (0).

1.6 mc2prowtoggle

Mc2pRowToggle ; Toggle c2p row lacing between Even/Odd rows

Toggles the current frame for row-interlacing between even and odd, and vice versa ←↩
,

in order to cause the row-interlacing effect with successive calls to the
chunky-to-planar converter.

Mildred 23 / 79

1.7 mc2pcolumntoggle

Mc2pColumnToggle ; Toggle c2p column lacing between Even/Odd columns

Toggles the current frame for column-interlacing between even and odd, and vice
versa, in order to cause the column-interlacing effect with successive calls to
the chunky-to-planar converter.

1.8 mc2ptogglesingle

Mc2pToggleSingle ; Toggle c2p lacing for single-buffered display

Performs both row and column interlacing toggles in the c2p system (if applicable)
in a manner that is designed for use with single-buffered displays. Not that it
may take 2-4 conversions in order to produce a full display.

1.9 mc2ptoggledouble

Mc2pToggleDouble Buf.b ; 0 or 1. Toggle c2p lacing for double-buffered display

Performs both row and column interlacing toggles in the c2p system (if applicable)
in a manner that is designed for use with double-buffered displays. Note that it
may take 2-4 conversions in order to produce a full display.

1.10 mc2ptoggletriple

Mc2pToggleTriple Buf.b ; 0, 1 or 2. Toggle c2p lacing for triple-buffered display

Performs both row and column interlacing toggles in the c2p system (if applicable)
in a manner that is designed for use with triple-buffered displays. Note that it
may take 2-6 conversions in order to produce a full display.

1.11 mc2ptoggle

Mc2pToggle Buffers.b,Buf.b ; 1, 2 or 3, and 0, 1 or 2. Toggle c2p lacing.

Performs row and column interlacing toggles (if applicable) in the c2p system in
a manner that is designed for use with single, double, or triple-buffered
displays, in which you must specify the current frame number (0..Buffers-1).
Normally you should toggle your buffers with something like Buf=1-Buf, or a
slighly more complicated cycling of the current number for triple-buffered
displays. This command effectively does the same as Mc2pToggleSingle,
Mc2pToggleDouble or Mc2pToggleTriple, although you do have more manual control
over frame number (be careful with misuse of it or you might get wierd results).

Mildred 24 / 79

1.12 m040c2pusage

M040c2pUsage Status.b ; On/Off - Availability of 040 c2p. Overrides Mc2pCPUmode

The c2p system has routines for 030 or lower, and 040 or higher cpu’s. In order
to completely shut out the 040 routine in all circumstances, this command should
be used. Even if you set the c2pCPUmode to use the 040 routine and have enabled
040 usage, the c2p system will use the 030 routine. You do not have to worry
about the 040 c2p routine running on a lower cpu as it will not crash. It will
simply be less efficient.

1.13 mc2pcpumode

Mc2pCPUmode CPU.b ; Set cpu c2p uses. Use ‘Processor’ or MProcessor. <4=030-, ←↩
>3=040+

Use this to set the cpu to which the c2p system should be targetted. Use the
blitz ‘Processor’ instruction/token as the parameter, or the new MProcessor
command. Values of 0,1,2 and 3 represent the 68030-optimised routine, and 4 or
6 represents the 68040+ optimised routine. If you set the mode to use the 040+
routine, M040c2pUsage can be used to toggle between 040 and 030 modes. You
should set the cpu mode for the c2p system before performing a chunky-to-planar
conversion, although Mildred will set the default cpu to use according to what
cpu is available at runtime. The c2pCPUmode is seperate of the general cpu mode
(see later). Mc2pCPUmode affects all c2pWindows that you use because it alters
which routine the conversion process uses at all times. It is perfectly safe to
use the 040+ c2p routine when the user does not have a processor of that
specification.

1.14 mc2pwindow

Mc2pWindow c2pWindow#.w,OpWidth.w,OpHeight.w[,SourceBWidth.w[,Processor.b], ←↩
PlanarWidth.w,PlanarHeight.w]

Makes a c2pWindow object. This simply describes the size of the chunky-to-planar
operation to be later performed. The object does not contain any graphics data
and does not convert any data either. A c2pWindow object must be created before a
conversion can be performed. Operation width must be a multiple of 32 pixels. If
the source and destination ‘bitmaps’ are a different size, or you have line
modulos in some other way, you must supply all the parameters. Specifying
processor is done in the same way as Mc2pCPUmode and has precicely the same
effect, and is a global setting so needs only be done once.

1.15 mc2pwindowwidth

Mc2pWindowWidth (c2pWindowNumber.w) ; Returns width of c2pWindow

Returns the operation width as defined in a previously created c2pWindow object.

Mildred 25 / 79

1.16 mc2pwindowheight

Mc2pWindowHeight (c2pWindowNumber.w) ; Returns height of c2pWindow

Returns the operation height as defined in a previously created c2pWindow object.

1.17 mc2pwindownewheight

Mc2pWindowNewHeight c2pWindow#.w,NewHeight.w ; Change height of already defined ←↩
c2p object

Once a c2pWindow object has been created you are allowed to alter the operation
height any number of times without having to recreate the entire object.
Information changed in the c2pWindow structure will be affected by the status of
the interlacing features at the time of the object’s creation, not the current
settings.

1.18 mc2p

Mc2p [[c2pWindow#.w],Chunky.l],Planar.l ; Convert chunky to planar (Use Mc2pWindow ←↩
first)

Performs a conversion of data from Chunky format to Planar format. Chunky.l
points to some chunky-grahics data and Planar.l should point to some
planar-graphics data. The planar data, probably held in a normal Blitz Bitmap
object or pre-reserved memory area, should be non-interleaved and all bitplanes
should be in strictly contigous memory and should not have any line modulos,
otherwise the conversion will appear to produce faulty output. Data is read in
from chunky (fastram) and output to planar (chipram) with conversion on-the-fly.
If you omit the first two parameters (ie omit Chunky.l), the chunky address will
be found based on the current chunky Bitmap object’s data, and also the Bitmap’s
handle if Mildred’s wrapping feature is active, and also the Bitmap’s clip window
topleft corner if the Bitmap has clipping active. See the ‘Wrap’ and ‘Clip’
related commands. Note that Chunky.l and Planar.l basically represent the top-left
corner of the area to be converted and it is with this that you can position the
source and destination operations. See also the BitmapPtr and related commands.
It is highly recommended that output from the c2p (Planar.l) is aligned to the
nearest 4 bytes, ie 32 planar pixels, or the routine will suffer slowdown. Also
try and use the highest possible fetchmode in your display.

1.19 mreservec2pwindows

MReservec2pWindows [(]NumberOfWindows.w[)] ; Reserve structure-memory for ←↩
c2pWindows

This must be called before any operations are performed that have anything to do
with c2pWindow objects, unless making use of the default reserved c2pWindow
objects. This command simply reserves some structure memory in order to hold
the objects, but does not make space for holding any graphics-data. c2pWindow

Mildred 26 / 79

objects are numbered from 0 upwards. If used as a function, this command will
return the address of where the c2pWindow objects are being stored, or 0 for
failure.

1.20 mreserveshapes

MReserveShapes [(]NumberOfShapes.w[,ShapeBankToUse.w][)] ; Reserve structure- ←↩
memory for Shapes

This must be called before any operations are performed that have anything to do
with chunky Shape objects, unless making use of the default reserved chunky
Shapes. A chunky Shape is one of Mildred’s ‘shape’ objects, akin to a normal
blitz shapes except that they hold different information and the graphics are
stored in a different format (chunky). Using this command does not allocate
space for any shape graphics, but does make space for the shapes to be created
and stored. Chunky Shapes are numbered from 0 upwards. If used as a function,
this command will return the address of where the chunky Shape objects
(structures) are being stored, or 0 for failure. If the optional
ShapeBankToUse parameter is specified, with a valid shape bank number in the
range 0..31, a particular bank will be ‘used’ before new space for chunky Shapes
is allocated, meaning that you do not have to perform a seperate call to
MUseShapeBank.

1.21 mreservebitmaps

MReserveBitmaps [(]NumberOfBitmaps.w[)] ; Reserve structure-memory for Bitmaps

This must be called before any operations are performed that have anything to do
with chunky Bitmap objects, unless making use of the default reserved chunky
Bitmaps. A chunky Bitmap is one of Mildred’s ‘bitmap’ objects, akin to a normal
blitz bitmap except that they hold different information and the graphics are
stored in a different format (chunky). Using this command does not allocate
space for any shape graphics, but does make space for the shapes to be created
and stored. Chunky Shapes are numbered from 0 upwards. If used as a function,
this command will return the address of where the chunky Bitmap objects
(structures) are being stored, or 0 for failure.

1.22 minitshape

MInitShape [(]ShapeNumber.w,Width.w,Height.w[)] ; Allocmem for shape data

Initialises a new shape, which basically means that it creates a new chunky Shape
object. If Mildred’s autocookie feature is turned on, a cookie for the shape will
also be initialised also. Width should be a multiple of 4. A chunky Shape object
contains graphics data (also cookie-data). If used as a function, this command
will return the address of the new Shape’s graphics data or 0 for failure.

Mildred 27 / 79

1.23 mshape

MShape [(]ShapeNumber.w,Width.w,Height.w[)] ; Allocmem for shape data

Exactly the same as MInitShape (see above).

1.24 mbitmap

MBitmap [(]BitmapNumber.w,Width.w,Height.w[)] ; Allocmem for bitmap data

Initialises a new bitmap, which basically means that is creates a new chunky
Bitmap object. If Mildred’s autostencil feature is turned on, a stencil for the
bitmap will also be initialised. Width should be a multiple of 4 but bear in mind
that if you use any of the ‘Block’ or ‘Tile’ commands on 040+ it is necessary to
have a Bitmap width in multiples of 16. A chunky Bitmap object contains graphics
data (also stencil-data). Unlike normal blitz bitmap’s, a chunky Bitmap in Mildred
has stencils as integral parts of the object in the same way that shapes have
integral cookies. If used as a function, this command will return the address of
the new Bitmap’s graphics data or 0 for failure.

1.25 mautocookie

MAutoCookie On/Off ; Autocreation of ByteForByte cookies

Switches the auto-cookie-creation feature of Mildred On or Off. If switched On,
any chunky Shapes created in future will automatically create a cookie also.

1.26 mautostencil

MAutoStencil On/Off ; Autocreation of ByteForByte stencils

Switched the auto-stencil-creation feature of Mildred On or Off. If switched On,
any chunky Bitmaps created in future will automatically create a stencil also
(similar to a cookie).

1.27 mfreec2pwindows

MFreec2pWindows [Firstc2pWindow.w,Lastc2pWindow.w] ; Free/delete all/range of ←↩
c2pwindows

Allows you to free all, or a range of, c2pWindow objects. As c2pWindow objects do
not contain any graphics-data, this will simply kill the object definition. If
you omit the parameters it will free all objects regardless or otherwise will
free a range of objects (and will error-check that they exist first).

Mildred 28 / 79

1.28 mfreec2pwindow

MFreec2pWindow Free/delete a pre-existing c2pWindow

Free’s a specific previously-created c2pWindow. If the c2pWindow doesn’t exist it
will generate an error.

1.29 mfreeshapes

MFreeShapes [FirstShape.w,LastShape.w] ; Free/delete all/range of Shapes

Allows you to free all, or a range of, chunky Shape objects. Chunky Shape objects
contain graphics and possibly cookie data, so if you free these objects the
data will be freed also. If you omit the parameters it will free all objects
unconditionally, but if you specify a range of objects to free it will check that
each one exists first and if not will generate an error.

1.30 mfreeshape

MFreeShape ShapeNumber.w ; Free/delete a pre-existing Shape

Free’s a specific previously-created chunky Shape. If the Shape doesn’t exist it
will generate an error. The Shape’s definition and grapics-data (and cookie) will
be freed.

1.31 mfreebitmaps

MFreeBitmaps [FirstBitmap.w,LastBitmap.w] ; Free/delete all/range of Bitmaps

Allows you to free all, or a range of, chunky Bitmap objects. Chunky Bitmap
objects contain graphics and possibly stencil data, so if you free these objects
the data will be freed also. If you omit the parameters it will free all objects
unconditionally, but if you specify a range of objects to free it will check that
each one exists first and if not will generate an error.

1.32 mfreebitmap

MFreeBitmap BitmapNumber.w ; Free/delete a pre-existing Bitmap

Free’s a specific previously-created chunky Bitmap. If the Bitmap doesn’t exist
it will generate an error. The Bitmap’s definition and graphics-data (and
stencil) will be freed.

Mildred 29 / 79

1.33 mshapewidth

MShapeWidth (ShapeNumber.w) ; Returns width of Shape

Returns the width of a previously created chunky Shape object.

1.34 mbitmapwidth

MBitmapWidth (BitmapNumber.w) ; Returns width of Bitmap

Returns the width of a previously created chunky Bitmap object.

1.35 mshapeheight

MShapeHeight (ShapeNumber.w) ; Returns height of Shape

Returns the height of a previously created chunky Shape object.

1.36 mbitmapheight

MBitmapHeight (BitmapNumber.w) ; Returns height of Bitmap

Returns the height of a previously created chunky Bitmap object.

1.37 maddrc2pwindow

MAddrc2pWindow (c2pWindowNumer.w} ; Returns address of c2pWindow structure

Returns the address in memory of a specified c2pWindow object. This is the
address at which the object’s structure can be found.

1.38 maddrshape

MAddrShape (ShapeNumber.w) ; Returns address of Shape structure

Returns the address in memory of a specified chunky Shape object. This is the
address at which the object’s structure can be found, not the address of the
graphics-data or cookie-data.

Mildred 30 / 79

1.39 maddrbitmap

MAddrBitmap (BitmapNumber.w) ; Returns address of Bitmap structure

Returns the address in memory of a specified chunky Bitmap object. This is the
address at whicih the object’s structure can be found, not the address of the
graphics-data or stencil-data.

1.40 mhandle

MHandle ShapeNumber.w,XOffset.w,YOffset.w ; Set handle of Shape

Sets the handle for a previously-created chunky Shape object. This is the
coordinate offset that is added to the coordinates that you may specify for a
blit-operation later on. These coordinates are also used by Mildred’s wrapping
feature to provide the offset of a sliding window relative to the base of the
Shape’s image and/or cookie.

1.41 mbitmaporigin

MBitmapOrigin BitmapNumber.w,XOffset.w,YOffset.w ; Set origin of Bitmap

Sets the handle for a previously-created chunky Bitmap object. This is the
coordinate offset that is added to the coordintes that you may specify for a
blit-operation later on, but is more likely to be used in conjunction with
Mildred’s wrapping feature to provide the offset of a sliding window relative to
the Bitmap’s image and/or stencil.

1.42 mmidhandle

MMidHandle ShapeNumber.w ; Set handle to middle of Shape

Sets the handle for a previously-created chunky Shape object to the center of the
Shape.

1.43 mbitmapmidorigin

MBitmapMidOrigin BitmapNumber.w ; Set origin to middle of Bitmap

Sets the handle for a previously-created chunky Bitmap object to the center of
the Bitmap.

Mildred 31 / 79

1.44 musec2pwindows

MUsec2pWindows Mainc2pWindowNum.w[,Secondc2pWindowNum.w[,Thirdc2pWindowNum.w]] ; ←↩
Current to use

Allows you to specify one, two or three c2pWindow objects to be used as the
‘current’ objects. Once made current, an object can be ‘assumed’ in later
commands so that it doesn’t have to be respecified each time.

1.45 musec2pwindow

MUsec2pWindow c2pWindowNumber.w ; Current to use

Allows you to specify the main c2pWindow object to be used as the ‘current’
object. Once made current, an object can be ‘assumed’ in later commands so that
it doesn’t have to be respecified each time.

1.46 museshapes

MUseShapes MainShapeNum.w[,SecondShapeNum.w[,ThirdShapeNum.w]] ; Current Shape(s) ←↩
to use

Allows you to specify one, two or three chunky Shape objects to be used as the
‘current’ objects. Once made current, an object can be ‘assumed’ in later
commands so that it doesn’t have to be respecified each time.

1.47 museshape

MUseShape ShapeNumber.w ; Current Shape to use

Allows you to specify the main chunky Shape object to be used as the ‘current’
object. Once made current, an object can be ‘assumed’ in later commands so that
it doesn’t have to be respecified each time.

1.48 musebitmaps

MUseBitmaps MainBitmapNum.w[,SecondBitmapNum.w[,ThirdBitmapNum.w]] ; Current ←↩
Bitmap to use

Allows you to specify one, two or three chunky Bitmap objects to be used as the
‘current’ objects. Once made current, an object can be ‘assumed’ in later
commands so that it doesn’t have to be respecified each time.

Mildred 32 / 79

1.49 musebitmap

MUseBitmap BitmapNumber.w ; Current Bitmap to use

Allows you to specify the main chunky Bitmap object to be used as the ‘current’
object. Once made current, an object can be ‘assumed’ in later commands so that
it doesn’t have to be respecified each time.

1.50 musedc2pwindow

MUsedc2pWindow ; Returns currently used c2pWindow

Returns the number of the currently used main c2pWindow object.

1.51 musedshape

MUsedShape ; Returns currently used Shape

Returns the number of the currently used main chunky Shape object.

1.52 musedbitmap

MUsedBitmap ; Returns currently used Bitmap

Returns the number of the currently used main chunky Bitmap object.

1.53 mcludgeshape

MCludgeShape ShapeNumber.w,Width.w,Height.w,Memory.l ; Cludge shape from existing ←↩
mem

Creates a new chunky Shape object from some existing graphics memory that may or
may not contain some chunky-format graphics. Ensure that you have allocated at
least 16 bytes more memory than you need as the Shape will modify the base
address in order to facilitate proper block-handling routines on higher cpu’s.
Width should be a multiple of 4. The base-address is modified with the
expression: (base=base+16) and $FFFFFFF0. If the autocookie feature of Mildred is
active some new memory will also be allocated for a cookie (not cludged). The
memory you cludge a Shape onto should generally be in fastram.

1.54 mcludgebitmap

Mildred 33 / 79

MCludgeBitmap BitmapNumber.w,Width.w,Height.w,Memory.l ; Cludge bitmap from ←↩
existing mem

Creates a new chunky Bitmap object from some existing graphics memory that may or
may not contain some chunky-format graphics. Ensure that you have allocated at
least 16 bytes more memory than you need as the Bitmap will modify the base
address in order to facilitate proper block-handling routines on higiher cpu’s.
Width should be a multiple of 4. The base-address is modified with the
expression: (base=base+16) and $FFFFFFF0. If the autostencil feature of Mildred
is active some new memory will also be allocated for a stencil (not cludged). The
memory you cludge a Bitmap onto should generally be in fastram.

1.55 mautousec2pwindows

MAutoUsec2pWindows True/False ; Automatically ‘use’ new c2pWindows. <>0=True

If switched on, it causes all c2pWindow objects that are created from this point
onwards to be ‘used’ as the ‘current’ main c2pWindow object.

1.56 mautouseshapes

MAutoUseShapes True/False ; Automatically ‘use’ new shapes. <>0=True

If switched on, it causes all chunky Shape objects that are created from this
point onwards to be ‘used’ as the ‘current’ main chunky Shape object.

1.57 mautousebitmaps

MAutoUseBitmaps True/False ; Automatically ‘use’ new bitmaps. <>0=True

If switched on, it causes all chunky Bitmap objects that are created from this
point onwards to be ‘used’ as the ‘current’ main chunky Bitmap object.

1.58 mmakecookies

MMakeCookies [FirstShape.w,LastShape.w] ; Make cookies for all/range of shapes

Initialises (if necessary) and generates cookies for all or a range of chunky
Shape objects. If the cookie doesn’t yet exist it will be allocated. The cookie
will be generated based on the contents of the Shape’s image. If the parameters
are omitted, all currently created chunnky Shapes will have cookies generated.
The area of a Shape used to make a cookie can be cropped using the Shape’s clip
window.

Mildred 34 / 79

1.59 mmakecookie

MMakeCookie ShapeNumber.w ; Make a cookie for a shape

Initialises (if necessary) and generates a cookie for a specific chunky Shape
object. If the cookie doesn’t yet exist it will be allocated. The cookie will be
generated based on the contents of the Shape’s image. The area of the Shape used
to make a cookie can be cropped using the Shape’s clip window.

1.60 mmakestencils

MMakeStencils [FirstBitmap.w,LastBitmap.w] ; Make stencils for all/range of ←↩
bitmaps

Initialises (if necessary) and generates cookies for all or a range of chunky
Bitmap objects. If the cookie doesn’t yet exist it will be allocated. The stencil
will be generated based on the contents of the Bitmap’s image. If the parameters
are omitted, all currently created chunky Bitmaps will have stencils generated.
The area of the Bitmap used to make a stencil can be cropped using the Bitmap’s
clip window.

1.61 mmakestencil

MMakeStencil BitmapNumber.w ; Make a stencil for a bitmap

Initialises (if necessary) and generates a stencil for a specific chunky Bitmap
object. If the stencil doesn’t yet exist it will be allocated. The stencil will
be generated based on the contents of the Bitmap’s image. The area of the Bitmap
used to make a stencil can be cropped using the Bitmap’s clip window.

1.62 mfreecookies

MFreeCookies [FirstShape.w,LastShape.w] ; Free all/range of cookies

Free’s all or a range of previously-created cookies in previously-created chunky
Shape objects. Only the cookie is freed. If the parameters are omitted all
cookies in any created chunky Shapes will be freed.

1.63 mfreecookie

MFreeCookie ShapeNumer.w ; Free’s the Shape’s cookie

Free’s a specific previously-created cookie in a previously-created chunky Shape
object. Only the cookie is freed.

Mildred 35 / 79

1.64 mfreestencils

MFreeStencils [FirstBitmap.w,LastBitmap.w] ; Free all/range of stencils

Free’s all or a range of previously-created stencils in previously-created chunky
Bitmap objects. Only the stencil is freed. If the parameters are omitted all
stencils in any created chunky Bitmaps will be freed.

1.65 mfreestencil

MFreeStencil BitmapNumber.w ; Free’s the Bitmap’s stencil

Free’s a specific previously-created stencil in a previously-created chunky
Bitmap object. Only the stencil is freed.

1.66 mautoshapewrap

MAutoShapeWrap On/Off ; Auto X&Y Handle-wrapping for Shapes

Turns the autowrapping feature of Mildred for chunky Shapes On or Off. Generally,
if the Bitmap is the destination in a graphics operation, the Shape’s handle will
be added to the output coordinates (and applies at all times even when output
coordinates are not specified). When wrapping is on, the base address will have
an offset added to it to represent the handle coordinates, before the
graphics-operation is performed. This causes the graphics-operation to output
into possibly unreserved memory and Mildred does not check for this so be very
careful to allocate a memory area to move into (make the Shape big enough). This
command turns the automatic wrapping On or Off which means that when a new chunky
Shape is created, the ‘wrapping’ flag for the Shape is activated to indicate that
the handle will be used in the operation. Wrapping has been implemented mainly to
better support sliding windows in memory for scrolling.

1.67 mautobitmapwrap

MAutoBitmapWrap On/Off ; Auto X&Y Handle-Wrapingp for Bitmaps

Turns the autowrapping feature of Mildred for chunky Bitmaps On or Off. Generally,
if the Bitmap is the destination in a graphics operation, the Bitmap’s handle will
be added to the output coordinates (and applies at all times even when output
coordinates are not specified). When wrapping is on, the base address will have
an offset added to it to represent the handle coordinates, before the
graphics-operation is performed. This causes the graphics-operation to output
into possibly unreserved memory and Mildred does not check for this so be very
careful to allocate a memory area to move into (make the Bitmap big enough). This
command turns the automatic wrapping On or Off which means that when a new chunky
Bitmap is created, the ‘wrapping’ flag for the Bitmap is activated to indicate ←↩

that
the handle will be used in the operation. Wrapping has been implemented mainly to
better support sliding windows in memory for scrolling.

Mildred 36 / 79

1.68 mshapewrap

MShapeWrap ShapeNumber.w,On/Off ; De/Activate X&Y Handle-Wrap for Shape

Specifically turns the wrapping for a chunky Shape On or Off. When On, the
Shape’s handle may be used in creating the address of part of a graphics
operation, typically when outputting to the Shape. This is mainly used for scroll
methods. Wrapping is used in probably all graphics operations in Mildred.

1.69 mbitmapwrap

MBitmapWrap BitmapNumber.w,On/Off ; De/Activate X&Y Handle-Wrap for Bitmap

Specifically turns the wrapping for a chunky Bitmap On or Off. When On, the
Bitmap’s handle may be used in creating the address of part of a graphics
operation, typically when outputting to the Bitmap. This is mainly used for
scroll methods. Wrapping is used in probably all graphics operations in Mildred.

1.70 mcludgeshapestruct

MCludgeShapeStruct [(]SourceShape.w,DestShape.w[)] ; Copy definition-data only

Creates a new chunky Shape object based on an existing Shape object. The existing
Shape’s definition is duplicated into the new chunky Shape and the graphics and
cookie data are cludged to use the data that exists in the original chunky Shape.
Graphics and cookie data are not copied to the new chunky Shape. If used as a
function, this command will return the address of the new Shape’s graphic data,
or 0 for failure.

1.71 mcludgebitmapstruct

MCludgeBitmapStruct [(]SourceBitmap.w,DestBitmap.w[)] ; Copy definition-data only

Creates a new chunky Bitmap object based on an existing Bitmap object. The
existing Bitmap’s definition is duplicated into the new chunky Bitmap and the
graphics and stencil data are cludged to use the data that exists in the original
chunky Bitmap. Graphics and stencil data are not copied to the new chunky Bitmap.
If used as a function, this command will return the address of the new Bitmap’s
graphic data, or 0 for failure.

1.72 mcopyc2pwindow

MCopyc2pWindow Sourcec2pWindow.w,Destc2pWindow.w ; Copy definition-data only

Duplicates an existing c2pWindow object into a new one. As c2pWindows do not
contain any graphics data, the c2pWindow’s definition data describing the size of
the operation only is copied, so is effectively just a ‘clone’ of the original.
You may want to use this in conjunction with MNewc2pWindowHeight.

Mildred 37 / 79

1.73 mshapewindow

MShapeWindow [(]SourceShape.w,DestShape.w,X.w,Y.w,Width.w,Height.w[)] ; Cludge ←↩
Shape within a Shape

Makes a new chunky Shape object based on an existing chunky Shape object,
allowing a ‘window’ within the existing Shape to be used as the new one.
Therefore graphics and cookie data are cludged from the existing Shape’s data.
Width should be a multiple of 4 and X,Y specify the top-left corner of the window
within the existing chunky Shape. If used as a function, this command will return
the address of the Shape’s graphics data, or 0 for failure.

1.74 mbitmapwindow

MBitmapWindow [(]SourceBitmap.w,DestBitmap.w,X.w,Y.w,Width.w,Height.w[)] ; Cludge ←↩
Bitmap within a Bitmap

Makes a new chunky Bitmap object based on an existing chunky Bitmap object,
allowing a ‘window’ within the exising Bitmap to be used as the new one.
Therefore graphics and sencil data are cludged from the existing Bitmap’s data.
Width should be a multiple of 4 and X,Y specify the top-left corner of the window
within the existing chunky Bitmap. If used as a function, this command will
return the address of the Bitmap’s graphics data, or 0 for failure.

1.75 mbitmapshape

MBitmapShape [(]SourceBitmap.w,DestShape.w[)] ; Copy definition-data only

Creates a new chunky Shape object based on a previously-created chunky Bitmap
object. The information for the Bitmap is copied into the Shape and then the
graphics are cludged. The Bitmap’s stencil will be used as the new Shape’s
cookie. The Bitmap’s graphic and stencil are not copied. This command takes
advantage of the fact that, internally, chunky Shapes are 100% interchanageable
with chunky Bitmaps. If used as a function, this command will return the address
of the Shape’s graphics data, or 0 for failure.

1.76 mshapesbitmap

MShapesBitmap [(]SourceShape.w,DestBitmap.w[)] ; Copy definition-data only

Creates a new chunky Bitmap object based on a previously-created chunky Shape
object. The information for the Shape is copied into the Bitmap and then the
graphics are cludged. The Shape’s cookie will be used as the new Bitmap’s
stencil. The Shape’s graphic and cookie are not copied. This command takes
advantage of the fact that, internally, chunky Bitmaps are 100% interchangeable
with chunky Shapes. If used as a function, this command will return the address
of the Bitmap’s graphics data, or 0 for failure.

Mildred 38 / 79

1.77 mcopyhandle

MCopyHandle SourceShapeNumber.w,DestShapeNumber.w ; Copy a shape’s handle to ←↩
another shape

Copies the handle from one previously-created chunky Shape to another.

1.78 mcopyorigin

MCopyOrigin SourceBitmapNumber.w,DestBitmapNumber.w ; Copy a bitmap’s origin to ←↩
another bitmap

Copies the handle from one previously-created chunky Bitmap to another.

1.79 mautocookiexflip

MAutoCookieXFlip On/Off ; Auto X-Flip for Shape’s cookie

Sets Mildred’s autocookieXFlip setting On or Off. If On, any X (horizontal) flip
operations performed on a chunky Shape will also be performed on the Shape’s
cookie.

1.80 mautocookieyflip

MAutoCookieYFlip On/Off ; Auto Y-Flip for Shape’s cookie

Sets Mildred’s autocookieYFlip setting On or Off. If On, any Y (verticle) flip
operations performed on a chunky Shape will also be performed on the Shape’s
cookie.

1.81 mautostencilxflip

MAutoStencilXFlip On/Off ; Auto X-Flip for Bitmap’s stencil

Sets Mildred’s autostencilXFlip setting On or Off. If On, any X (horizontal) flip
operations performed on a chunky Bitmap will also be performed on the Bitmap’s
stencil.

1.82 mautostencilyflip

MAutoStencilYFlip On/Off ; Auto Y-Flip for Bitmap’s stencil

Sets Mildred’s autostencilYFlip setting On or Off. If On, any Y (verticle) flip
operations performed on a chunky Bitmap will also be performed on the Bitmap’s
stencil.

Mildred 39 / 79

1.83 mautocookieflip

MAutoCookieFlip On/Off ; Auto X&Y Cookie-Flip for Shapes

Sets Mildred’s autocookieYFlip and autocookieXFlip On or Off. If On, any X
(horizontal) or Y (verticle) flip operations performed on a chunky Shape will
also be performed on the Shape’s cookie. This command overrides any previous
seperate calls to MAutoCookieXFlip and MAutoCookieYFlip.

1.84 mautostencilflip

MAutoStencilFlip On/Off ; Auto X&Y Stencil-Flip for Bitmaps

Sets Mildreds autostencilYFlip and autostencilXFlip On or Off. If On, any X
(horizontal) or Y (verticle) flip operations performed on a chunky Bitmap will
also be performed on the Bitmap’s stencil. This command overrides any previous
seperate calls to MAutoStencilXFlip and MAutoStencilYFlip.

1.85 mshapexflip

MShapeXFlip ShapeNumber.w ; Horizontally flip a Shape (see MAutoCookieFlip)

Flips a previously-created chunky Shape’s graphic horizontally. The operation may
also be performed on the cookie if MAutoCookieXFlip or MAutoCookieFlip have been
activated. The area of the Shape to be flipped can be cropped using the Shape’s
clip window.

1.86 mshapeyflip

MShapeYFlip ShapeNumber.w ; Vertically flip a Shape (see MAutoCookieFlip)

Flips a previously-created chunky Shape’s graphic vertically. The operation may
also be performed on the cookie if MAutoCookieYFlip or MAutoCookieFlip have been
activated. The area of the Shape to be flipped can be cropped using the Shape’s
clip window.

1.87 mbitmapxflip

MBitmapXFlip BitmapNumber.w ; Horizontally flip a Bitmap (see MAutoStencilFlip)

Flips a previously-created chunky Bitmap’s graphic horizontally. The operation
may also be performed on the stencil if MAutoStencilXFlip or MAutoStencilFlip
have been activated. The area of the Bitmap to be flipped can be cropped using the
Shape’s clip window.

Mildred 40 / 79

1.88 mbitmapyflip

MBitmapYFlip BitmapNumber.w ; Vertically flip a Bitmap (see MAutoStencilFlip)

Flips a previously-created chunky Bitmap’s graphic vertically. The operation may
also be performed on the stencil if MAutoStencilYFlip or MAutoStencilFlip have
ben activated. The area of the Bitmap to be flipped can be cropped using the
Bitmap’s clip window.

1.89 mcookiexflip

MCookieXFlip ShapeNumber.w ; Horizontally flip a Shape’s cookie

Flips the cookie of a previously-created chunky Shape object horizontally. This
does not affect the Shape’s image. The area of the cookie to be flipped can be
cropped using the Shape’s clip window.

1.90 mcookieyflip

MCookieYFlip ShapeNumber.w ; Vertically flip a Shape’s cookie

Flips the cookie of a previously-created chunky Shape object vertically. This
does not affect the Shape’s image. The area of the cookie to be flipped can be
cropped using the Shape’s clip window.

1.91 mstencilxflip

MStencilXFlip BitmapNumber.w ; Horizontally flip a Bitmap’s stencil

Flips the stencil of a previously-created chunky Bitmap object horizontally. This
does not affect the Bitmap’s image. The area of the stencil to be flipped can be
cropped using the Bitmap’s clip window.

1.92 mstencilyflip

MStencilYFlip BitmapNumber.w ; Vertically flip a Bitmap’s stencil

Flips the stencil of a previously-created chunky Bitmap object vertically. This
does not affect the Bitmap’s image. The area of the stencil to be flipped can be
cropped using the Bitmap’s clip window.

1.93 mautoshapeclip

Mildred 41 / 79

MAutoShapeClip Status.b ; Auto-clip new Shapes. On/Off

Sets the clipping flag of a chunky Shape On or Off. If On, some graphics
operations performed on the Shape may be restrained to affect only the area of
the Shape defined by the clip window.

1.94 mautobitmapclip

MAutoBitmapClip Status.b ; Auto-clip new Bitmaps. On/Off

Sets the clipping flag of a chunky Bitmap On or Off. If On, some graphics
operations performed on the Bitmap may be restrained to affect only the area of
the Bitmap defined by the clip window.

1.95 mshapeclip

MShapeClip ShapeNumber.w[,X.w,Y.w,Width.w,Height.w][,Active] ; Active=On/Off. ←↩
Define Shape’s clip window

Specifies the position (X,Y) and size (WidthxHeight) of the clip window to be
used for the specified chunky Shape object. Clipping may also be turned On or Off
using the additional ‘active’ parameter. The window should be fully within the
limits of the Shape’s graphic and the Width should be a multiple of 4.

1.96 mbitmapclip

MBitmapClip BitmapNumber.w[,X.w,Y.w,Width.w,Height.w][,Active] ; Active=On/Off. ←↩
Define Bitmap’s clip window

Specifies the position (X,Y) and size (WidthxHeight) of the clip window to be
used for the specified chunky Bitmap object. Clipping may also be turned On or
Off using the additional ‘active’ parameter. The window should be fully within
the limits of the Bitmap’s graphic and the Width should be a multiple of 4.

1.97 mgetashape

MGetaShape ShapeNumber.w,X.w,Y.w,Width.w,Height.w[,Block?,StencilIsCookie?] ; Grab ←↩
shape from bitmap

Grabs a new chunky Shape object from a previously-created chunky Bitmap object.
The chunky Shape is created of the dimensions specified (Width must be multiple
of 4) and then the Bitmap’s graphic is copied into the Shape. If the ‘Block’
parameter is set to True or On, a block-scroll type of grab will be used, for
which the Shape should have a width that is a multiple of 16, and the Shape
should be grabbed from X coordinates that are multiples of 16. You can also
specify to use the Bitmap’s stencil as the cookie, in which case the relevant
portion of the stencil will be copied into the new Shape’s cookie. The end result
is a new, standalone (non-cludged) chunky Shape.

Mildred 42 / 79

1.98 mgetabitmap

MGetaBitmap BitmapNumber.w,X.w,Y.w,Width.w,Height.w[,Block?,CookieIsStencil?] ; ←↩
Grab bitmap from shape

Grabs a new chunky Bitmap object from a previously-created chunky Shape object.
The chunky Bitmap is created of the dimensions specified (Width must be multiple
of 4) and then the Shape’s graphic is copied into the Bitmap. If the ‘Block’
parameter is set to True or On, a block-scroll type of grab will be used, for
which the Bitmap should have a width that is a multiple of 16, and the Bitmap
should be grabbed from X coordinates that are multiples of 16. You can also
specify to use the Shape’s cookie as the stencil, in which case the relevant
portion of the cookie will be copied into the new Bitmap’s stencil. The end
result is a new, standalone (non-cludged) chunky Bitmap.

1.99 mscroll

MScroll X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; Copy graphic

Copies an area from within one chunky Bitmap to somewhere in another chunky
Bitmap. The currently used main Bitmap is the destination, and is also the source
unless you specify otherwise. The entire operation should fit within the
dimensions of the chunky Bitmaps and will not be cropped.

1.100 mscrollshape

MScrollShape X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Copy ←↩
graphic

Does the same as MScroll but with regards to chunky Shape objects. Source and
destination are chunky Shape objects.

1.101 mscrollstencil

MScrollStencil X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ;

Does the same as MScroll but with regards to the stencil of chunky Bitmap
objects. Source and destination are chunky Bitmap object’s stencils. The source
Bitmap’s stencil will be copied into the destination Bitmap’s stencil.

1.102 mscrollcookie

MScrollCookie X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Copy ←↩
cookie to cookie only

Does the same as MScroll but with regards to the cookie of chunky Shape objects.
Source and destination are chunky Shape object’s cookies. The source Shape’s
cookie will be copied into the destination Shape’s cookie.

Mildred 43 / 79

1.103 mmaskscroll

MMaskScroll X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; Copy bitmap ←↩
graphic with stencil-cut

Performs a masked copy of an area from within one chunky Bitmap to somewhere in
another chunky Bitmap. The currently used main Bitmap is the destination, and is
also the source unless you specify otherwise. Width should be a multiple of 4 and
the entire operation should fit within the dimensions of the chunky Bitmaps and
will not be cropped. Any chunky Bitmaps used should have a stencil created for
them and this will be used to perform a masked copy. Any holes in the stencil, ie
any areas of colour 0 in the source Bitmap, will be transparent.

1.104 mmaskscrollshape

MMaskScrollShape X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Copy ←↩
shape graphic with cookie-cut

Does the same as MMaskScroll but with regards to chunky Shape objects. Source and
destination are chunky Shape objects.

1.105 mmaskscrollstencil

MMaskScrollStencil X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w];Copy ←↩
stencil2stencil & stencil-cut

Does the same as MMaskScroll but with regards to the stencil of chunky Bitmap
objects. Source and destination are chunky Bitmap object’s stencils. The source
Bitmap’s stencil will be mask-blitted onto the destination Bitmap’s stencil.

1.106 mmaskscrollcookie

MMaskScrollCookie X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Copy ←↩
cookie to cookie & cookie-cut

Does the same as MMaskScroll but with regards to the cookie of chunky Shape
objects. Source and destination are chunky Shape object’s cookie. The source
Shape’s cookie will be mask-blitted onto the destination Shape’s cookie.

1.107 mscrollbitmaptoshape

MScrollBitmapToShape X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; ←↩
Copy bitmap to shape

Does the same as MScroll except that the source of the operation will be a chunky
Bitmap and the destination will be a chunky Shape. The Bitmap’s image will be
copied into the Shape.

Mildred 44 / 79

1.108 mscrollshapetobitmap

MScrollShapeToBitmap X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; ←↩
Copy shape to bitmap

Does the same as MScroll except that the source of the operation will be a chunky
Shape and the destination will be a chunky Bitmap. The Shape’s image will be
copied into the Bitmap. This does effectively the same as a normal ‘Blit’ of a
Shape to a Bitmap.

1.109 mscrollstenciltocookie

MScrollStencilToCookie X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; ←↩
Copy stencil to cookie

Does the same as MScroll except that the source of the operation will be the
stencil of a chunky Bitmap, which will be copied to the cookie of a chunky Shape.

1.110 mscrollcookietostencil

MScrollCookieToStencil X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; ←↩
Copy cookie to stencil

Does the same as MScroll except that the source of the operation will be the
cookie of a chunky Shape, which will be copied to the stencil of a chunky Bitmap.

1.111 mmaskscrollbitmaptoshape

MMaskScrollBitmapToShape X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ←↩
; Copy bitmap to shape & cut

Does the same as MMaskScroll except that the source of the operation will be a
chunky Bitmap and the destination will be a chunky Shape. The Bitmap’s image will
be blitted to the shape using the Bitmap’s stencil as a mask.

1.112 mmaskscrollshapetobitmap

MMaskScrollShapeToBitmap X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; ←↩
Copy shape to bitmap & cut

Does the same as MMaskScroll except that the source of the operation will be a
chunky Shape and the destination will be a chunky Bitmap. The Shape’s image will
be blitted to the Bitmap using the Shape’s cookie as a mask. This does
effictively the same as a normal ‘Cookie Blit’ of a Shape to a Bitmap.

Mildred 45 / 79

1.113 mmaskscrollstenciltocookie

MMaskScrollStencilToCookie X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w ←↩
] ;Copy stencil2cookie & cut

Does the same as MMaskScroll except that the source of the operation will be a
chunky Bitmap’s stencil which will be mask-blitted to the cookie of a chunky
Shape.

1.114 mmaskscrollcookietostencil

MMaskScrollCookieToStencil X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ←↩
; Copy cookie2stencil & cut

Does the same as MMaskScroll except that the source of the operation will be a
chunky Shape’s cookie which will be mask-blitted to the stencil of a chunky
Bitmap.

1.115 mblockscroll

MBlockScroll X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; BlockCopy ←↩
graphic

Performs a block-scroll within a chunky Bitmap object or using a different chunky
Bitmap as the source. Width should be a multiple of 16 and the overall operation
should be within the dimensions of the Bitmaps. X1 (source) and X2 (dest) should
be a multiple of 16 as a special block-copy (in multiples of 16) is performed.

1.116 mblockscrollshape

MBlockScrollShape X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; ←↩
BlockCopy graphic

Does the same as MBlockScroll except with regards to chunky Shapes. The Shape’s
image will be copied into another Shape’s image. Width, X1 and X2 should be
multiples of 16.

1.117 mblockscrollstencil

MBlockScrollStencil X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; ←↩
BlockCopy stencil to stencil

Does the same as MBlockScroll except with regards to the stencils of chunky
Bitmaps. The Bitmap’s stencil will be copied into another Bitmap’s stencil. Width,
X1 and X2 should be multiples of 16.

Mildred 46 / 79

1.118 mblockscrollcookie

MBlockScrollCookie X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; ←↩
BlockCopy cookie to cookie

Does the same as MBlockScroll except with regards to the cookies of chunky
Shapes. The Shape’s cookie will be copied into another Shape’s cookie. Width, X1
and X2 should be multiples of 16.

1.119 mblockscrollbitmaptoshape

MBlockScrollBitmapToShape X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ←↩
; BlockCopy bitmap to shape

Does the same as MBlockScroll except that the source of the operation is a chunky
Bitmap and the destination is a chunky Shape.

1.120 mblockscrollshapetobitmap

MBlockScrollShapeToBitmap X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ←↩
; BlockCopy shape to bitmap

Does the same as MBlockScroll except that the source of the operation is a chunky
Shape and the destination is a chunky Bitmap. This is effectively a ‘Block’ blit
of a Shape to a Bitmap.

1.121 mblockscrollstenciltocookie

MBlockScrollStencilToCookie X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum. ←↩
w];BlockCopy stencil2cookie

Does the same as MBlockScroll except that the source of the operation is a chunky
Bitmap’s stencil which is block-copied into the cookie of a chunky Shape.

1.122 mblockscrollcookietostencil

MBlockScrollCookieToStencil X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w ←↩
] ; BlockCopy cookie2stencil

Does the same as MBlockScroll except that the source of the operation is a chunky
Shape’s cookie which is block-copied into the stencil of a chunky Bitmap.

Mildred 47 / 79

1.123 mcpu

MCPU Processor.b ; Set cpu routines allowed to use. 0..3=000..030, or >3=040+. ←↩
CAREFUL!!

Sets the general CPU specification that the user has available. This will enable
Mildred to use specially optimised routines where possible to provide better
performance on particular processors. You should pass the blitz ‘Processor’
instruction or the new MProcessor command as the parameter in which values of
0..3 represent that the user has a 68030 or lower, and a 4 or 6 represents
that they have a 68040 or higher. Be sure that the user does have the
processor you are specifying as, unlike Mc2pCPUmode (which is seperate
entirely), it is possible to crash the computer if you attempt to use
routines for a cpu that is not capable of certain instructions (such as 040+
routines). This problem is usually avoided by simply using the blitz
‘Processor’ instruction or MProcessor. MCPU should be used near to the start
of your program before performing any operations that use chunky Shapes and
chunky Bitmaps, although since v1.36 it will be automatically set internally
according to what cpu is available at runtime. If you do not wish to override
this you can forget about having to set a CPU mode.

1.124 mcls

MCls [Colour] Clear a bitmap to colour 0 or the specified colour

Performs a clearscreen on the currently used main chunky Bitmap. If specified, it
will be cleared to the colour you choose, otherwise will be cleared to 0 (usually
black). The area of the Bitmap affected by the operation can be limited by use of
a clip window and the clipping feature in the Bitmap to be used.

1.125 mclsshape

MClsShape [Colour] Clear a shape to colour 0 or the specified colour

Does the same as MCls but on a Shape’s graphic and using the currently used main
chunky Shape.

1.126 mclsstencil

MClsStencil [Colour] Clear a stencil to colour 0 or the specified colour

Does the same as MCls but on the stencil of the currently used chunky Bitmap. The
actual value placed into the stencil /represents/ the colour you specify as if
all pixels in the graphic were of that colour.

Mildred 48 / 79

1.127 mclscookie

MClsCookie [Colour] Clear a cookie to colour 0 or the specified colour

Does the same as MCls but on the cookie of the currently used chunky Shape. The
actual value placed into the cookie /represents/ the colour you specify as if all
pixels in the graphic were of that colour.

1.128 mplot

MPlot Xpos.w,Ypos.w[,Colour] ; Plot a single pixel in the bitmap [to the specified ←↩
colour]

Plots a single pixel within the currently used main Chunky Bitmap to the
specified colour or the currently used ink colour.

1.129 mplotshape

MPlotShape Xpos.w,Ypos.w[,Colour] ; Plot a single pixel in the shape [to the ←↩
specified colour]

Plots a single pixel within the currently used main chunky Shape to the specified
colour or the currently used ink colour.

1.130 mplotstencil

MPlotStencil Xpos.w,Ypos.w[,Colour] ; Plot a single pixel in the stencil to * ←↩
represent* the [specified] colour

Plots a single pixel within the stencil of the currently used main chunky Bitmap
to /represent/ the specified colour or the currently used ink colour in the
Bitmap’s graphic.

1.131 mplotcookie

MPlotCookie Xpos.w,Ypos.w[,Colour] ; Plot a single pixel in the cookie to * ←↩
represent* the [specified] colour

Plots a single pixel within the cookie of the currently used main chunky Shape to
/represent/ the specified colour or 0 in the Shape’s graphic.

1.132 mpoint

Mildred 49 / 79

MPoint (Xpos.w,Ypos.w) ; Return the colour of a single pixel in a bitmap

Returns the colour (register number) of a single pixel in the currently used
chunky Bitmap.

1.133 mpointshape

MPointShape (Xpos.w,Ypos.w) ; Return the colour of a single pixel in a shape

Returns the colour (register number) of a single pixel in the currently used
chunky Shape.

1.134 mpointstencil

MPointStencil (Xpos.w,Ypos.w) ; Return the status of a single pixel in a stencil. ←↩
-1=Data, 0=Background

Returns True or False representing wether the colour (register number) of a
single pixel in the currently used chunky Bitmap is transparent or not, based on
the Bitmap’s stencil.

1.135 mpointcookie

MPointCookie (Xpos.w,Ypos.w) ; Return the status of a single pixel in a cookie. ←↩
-1=Data, 0=Background

Returns True or False representing wether the colour (register number) of a
single pixel in the currently used chunky Shape is transparent or not, based on
the Shape’s cookie.

1.136 msscroll

MSScroll X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; Copy bm 2 bm ←↩
and st 2 st

Stencil-Scrolls an area within the currently used chunky Bitmap, or using a
different source Bitmap if specified. If SScrollCut is Off, a normal ‘SBlit’
will be performed in which the source Bitmap’s graphic will be copied to the
destination Bitmap’s graphic, and the source Bitmap’s stencil is copied to the
destination Bitmap’s stencil. If SScrollCut is On, the destination Bitmap’s
stencil will be used to protect areas of the destination Bitmap’s graphic,
instead of copying the source stencil into the destination stencil,
effectively scrolling the source image ‘behind’ the protected parts of the
destination. The destination Bitmap should have a stencil.

Mildred 50 / 79

1.137 msscrollshape

MSScrollShape X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Copy sh 2 ←↩
sh and ck 2 ck

Does the same as MSScroll except with regards to chunky Shapes. The Shape’s
graphic and cookie are copied to the destination Shape’s graphic and cookie, or
the Shape’s graphic is cut ‘behind’ the cookie-protected areas of the destination
Shape’s image.

1.138 msscrollbitmaptoshape

MSScrollBitmapToShape X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; ←↩
Copy bm 2 sh and st 2 ck

Does the same as MSScroll except that the source is a chunky Bitmap and the
destination is a chunky Shape. The Bitmap’s graphic and stencil are copied to the
destination Shape’s graphic and cookie, or the Bitmap’s graphic is cut ‘behind’
the cookie-protected areas of the destination Shape’s image.

1.139 msscrollshapetobitmap

MSScrollShapeToBitmap X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; ←↩
Copy sh 2 bm and ck 2 st

Does the same as MSScroll except that the source is a chunky Shape and the
destination is a chunky Bitmap. This is effectively the equivelent of an ‘SBlit’
of a Shape to a Bitmap. The Shape’s graphic and cookie are copied to the
destination Bitmap’s graphic and stencil, or the Shape’s graphic is cut ‘behind’
the stencil-protected areas of the destination Bitmap’s image.

1.140 msmaskscroll

MSMaskScroll X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; Stencil- ←↩
Copy bm 2 bm and st 2 st

Stencil-MaskScrolls an area within the currently used chunky Bitmap, or using a
different source Bitmap if specified. Width should be a multiple of 4. If
SScrollCut is Off, a normal ‘SMaskBlit’ will be performed in which the source
Bitmap’s graphic will be mask-copied to the destination Bitmap’s graphic (with
masking), and the source Bitmap’s stencil is copied to the destination Bitmap’s
stencil (with masking). If SScrollCut is On, the destination Bitmap’s stencil
will be used to protect areas of the destination Bitmap’s graphic, instead of
copying the source stencil into the destination stencil, effectively scrolling the
source image ‘behind’ the protected parts of the destination and yet with masking
to cause any areas in the source graphic of Colour 0 to be used as transparent.
Both source and destination Bitmaps should have stencils.

Mildred 51 / 79

1.141 msmaskscrollshape

MSMaskScrollShape X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Cookie ←↩
-Copy sh2sh and ck2ck

Does the same as MSMaskScroll except with regards to chunky Shapes. The Shape’s
graphic and cookie are mask-copied to the destination Shape’s graphic and cookie,
or the Shape’s graphic is mask-cut ‘behind’ the cookie-protected areas of the
destination Shape’s image.

1.142 msmaskscrollbitmaptoshape

MSMaskScrollBitmapToShape X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ←↩
;Sten-Copy bm2sh&st2ck

Does the same as MSMaskScroll except that the source is a chunky Bitmap and the
destination is a chunky Shape. The Bitmap’s graphic and stencil are mask-copied
to the destination Shape’s graphic and cookie, or the Bitmap’s graphic is
mask-cut ‘behind’ the cookie-protected areas of the destination Shape’s image.

1.143 msmaskscrollshapetobitmap

MSMaskScrollShapeToBitmap X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ←↩
; Cook-Copy sh2bm&ck2st

Does the same as MSMaskScroll except that the source is a chunky Shape and the
destination is a chunky Bitmap. This is effectively the equivelent of an
‘SMaskBlit’ of a Shape to a Bitmap. The Shape’s graphic and cookie are
mask-copied to the destination Bitmap’s graphic and stencil, or the Shape’s
graphic is mask-cut ‘behind’ the stencil-protected areas of the destination
Bitmap’s image.

1.144 msblockscroll

MSBlockScroll X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w] ; Block- ←↩
Copy bm 2 bm and st 2 st

Stencil-BlockScrolls an area within the currently used chunky Bitmap, or using a
different source Bitmap if specified. Width, X1 and X2 should be multiples of 16.
If SScrollCut is Off, a normal ‘SBlockBlit’ will be performed in which the source
Bitmap’s graphic will be mask-blockcopied to the destination Bitmap’s graphic
(with masking), and the source Bitmap’s stencil is copied to the destination
Bitmap’s stencil (with masking). If SSCrollCut is On, the destination Bitmap’s
stencil willbe used to protect areas of the destination Bitmap’s graphic, instead
of copying the source stencil into the destination stencil, effectively scrolling
the source image ‘behind’ the protected parts of the destination. Both source and
destination Bitmaps should have stencils. 040+ routines are used where possible
but not when MSScrollCut is On as this is not possible.

Mildred 52 / 79

1.145 msblockscrollshape

MSBlockScrollShape X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w] ; Block ←↩
-Copy sh2sh and ck2ck

Does the same as MSBlockScroll except with regards to chunky Shapes. The chunky
Shape’s graphic and cookie are block-blitted to the destination Shape’s graphic
and cookie, or the source Shape’s graphic is block-cut ‘behind’ the
cookie-protected areas of the destination Shape.

1.146 msblockscrollbitmaptoshape

MSBlockScrollBitmapToShape X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceBitmapNum.w ←↩
];BlockCopy bm2sh&st2ck

Does the same as MSBlockScroll except that the source is a chunky Bitmap and the
destination is a chunky Shape. The chunky Bitmap’s graphic and stencil are
block-blitted to the destination Shape’s graphic and cookie, or the source
Bitmap’s graphic is block-cut ‘behind’ the cookie-protected areas of the
destination Shape.

1.147 msblockscrollshapetobitmap

MSBlockScrollShapeToBitmap X1.w,Y1.w,Width.w,Height.w,X2.w,Y2.w[,SourceShapeNum.w ←↩
];BlockCopy sh2bm&ck2st

Does the same as MSBlockScroll except that the source is a chunky Shape and the
destination is a chunky Bitmap. The chunky Shape’s graphic and cookie are
block-blitted to the destination Bitmap’s graphic and stencil, or the source
Shape’s graphic is block-cut ‘behind’ the stencil-protected areas of the
destination Bitmap.

1.148 msscrollcut

MSScrollCut On/Off ; 0=Paste stencil/cookie, <>0=Cut using stencil/cookie

Sets the ‘cut’ mode of the MSScroll family of scroll’s On or Off. If On, any
calls the Stencil-Scrolls will cause the source image to be placed behind the
stencil or cookie protected areas of the destination. If SScrollCut is switched
off it will cause the Stencil-Scrolls to perform the same operation on the
stencils and cookies as is performed on the images and no cutting/protecting will
be performed, which corresponds to a normal ‘SBlit’.

1.149 museshapebank

Mildred 53 / 79

MUseShapeBank BankNumber.w ; Current shape bank, 0..31

In Mildred there are currently 32 built-in ‘banks’ of Shapes. When you reserve
some shapes with MReserveShapes they usually only use bank 0, but if you wish you
can use *seperate* sets of shapes in banks numbered 0 to 31. You should ‘use’ a
bank before reserving shapes. Note that operations accross banks are not possible
and a current Shape number of 5 means chunky Shape 5 in the ‘current’ bank.

1.150 mpicturedissolvein

MPictureDissolveIn PictureBitmapNum.w,Colour.b ; Do a picture-based colour-number ←↩
dissolve-in of a bitmap

Performs a picture-based dissolve in order to ‘bring in’ an source image onto a
destination bitmap. You first have to ‘use’ two bitmaps with MBitmapsUse, in
which you specify the source and destination chunky Bitmap’s. Then you specify
the ‘Picture Bitmap’ as a parameter to this command which will be the number of a
chunky Bitmap containing an ‘effect’ picture. The routine will search for the
location of pixels in the effect picture that are of the specified colour. When
it finds one it will copy a pixel from those coordinates in the source Bitmap to
the same coordinates in the destination Bitmap. Note that all three Bitmaps in
this operation have to be the same size. To fully bring-in a whole picture you
should call this command as many times as there are colours in the effect-picture
so that all pixels are eventually copied. The more colours you make use of in the
effect-picture the longer the dissolve will take. Note that the effect-picture
should still be 256-colours even if you only use 64, for example. To create an
effect-picture that produces a nice screenwipe you should create a simple
greyscale gradient in something like Deluxe Paint and then perform some good
image-processing operations on it in something like ImageFX to distort and mangle
the gradient to bring variety into the effect. Note that if the destination
Bitmap already contains an image and you are dissolving in a new one, the two
images should use the same colour palette otherwise one of the two images will
appear in the wrong colours. If the destination bitmap starts off blank it will
just cause the source image to gradually appear on, for example, a black
background.

1.151 mmaskscrollmode

MMaskScrollMode Mode.w ; CookieMode/0 or EraseMode/1 or InvMode/2 or SolidMode/3

The Mask family of Scroll commands can have a ‘type’ of blit operation which is
set with this command. You can use the already existing Blitz functions or values
0, 1, 2 and 3 which represent CookieMode, EraseMode, InvMode and SolidMode. The
normal mode is CookieMode in which the source’s stencil or cookie is used to
perform a blit in which areas of Colour 0 are transparent. EraseMode causes the
source’s stencil or cookie to erase an area matching its shape on the
destination image. InvMode causes the destination to be inverted in the shape of
the source stencil or cookie, and SolidMode places a solid copy of the source’s
stencil or cookie into the destination’s image, which will appear as Colour 255.

Mildred 54 / 79

1.152 mblitmode

MBlitMode Mode.w ; CookieMode/0 or EraseMode/1 or InvMode/2 or SolidMode/3

The normal ‘Blit’ family of commands can have a ‘type’ of blit operation which is
set with this command. You can use the already existing Blitz functions or values
0, 1, 2 and 3 which represent CookieMode, EraseMode, InvMode and SolidMode. The
normal mode is CookieMode in which the source’s cookie is used to perform a blit
in which areas of Colour 0 are transparent. EraseMode causes the source’s cookie
to erase an area matching its shae on the destination image. InvMode causes the
destination to be inverted in the shape of the source cookie, and SolidMode
places a solid copy of the cookie into the destination’s image, which will appear
as colour 255. MBlitMode also works with MColourMode, MReMapMode and
MSimpleReMapMode.

1.153 mblit

MBlit [ShapeNumber.w,]Xpos.w,Ypos,w ; Blit shape to bitmap, any coords

Performs a straight masked-blit of a chunky Shape into a chunky Bitmap to
coordinates Xpos,Ypos. If the ShapeNumber is omitted the currently used Shape is
used. The type of blit performed is defined with the MBlitMode command. Normally
the Shape is simply cookie-blitted onto the Bitmap, with areas of Colour 0 as
transparent. If the Shape does not have a cookie, it will be blitted in unmasked
‘Replace’ mode.

1.154 mblock

MBlock [ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit shape to bitmap, align Xpos and ←↩
width in multiples of 16!

Performs a straight unmasked block-blit of a chunky Shape into a chunky Bitmap to
coordinates Xpos,Ypos. Xpos should be a multiple of 16 and so should the width of
the Shape. If the ShapeNumber is omitted the currently used Shape is used. This
command performs only a solid ‘replace’ blit and does not use Colour 0 as
transparent.

1.155 mtile16x16

MTile16x16 [ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit 16x16 shape to bitmap, size ←↩
must be 16x16, align x/y

Performs a highly optimised blit of the currently-used or specified chunky Shape
into the currently used chunky Bitmap at Xpos,Ypos. The Shape should be 16x16 in
size and *both* Xpos and Ypos should be multiples of 16.

Mildred 55 / 79

1.156 mtile32x32

MTile32x32 [ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit 32x32 shape to bitmap, size ←↩
must be 32x32, align x/y

Performs a highly optimised blit of the currently-used or specified chunky Shape
into the currently used chunky Bitmap at Xpos,Ypos. The Shape should be 32x32 in
size and *both* Xpos and Ypos should be multiples of 32.

1.157 mstile16x16

MSTile16x16 [ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit 16x16 shape&cook 2 bitmap, ←↩
size 16x16, align x/y

Performs a highly optimised stencil-blit of the currently-used or specified
chunky Shape to the currently used chunky Bitmap at Xpos,Ypos. The Shape should
be 16x16 in size and *both* Xpos and Ypos should be multiples of 16. The Shape’s
graphic will be blitted to the Bitmap’s graphic, and the Shape’s cookie will be
blitted to the Bitmap’s stencil.

1.158 mstile32x32

MSTile32x32 [ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit 32x32 shape&cook 2 bitmap, ←↩
size 32x32, align x/y

Performs a highly optimised stencil-blit of the currently-used or specified
chunky Shape to the currently used chunky Bitmap at Xpos,Ypos. The Shape should
be 32x32 in size and *both* Xpos and Ypos should be multiples of 32. The Shape’s
graphic will be blitted to the Bitmap’s graphic, and the Shape’s cookie will be
blitted to the Bitmap’s stencil.

1.159 mstile16x16store

MSTile16x16Store [ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit 16x16 shape&cook 2 ←↩
bitmaps, size 16x16, align x/y

Does the same as MSTile16x16 except that the Shape’s graphic will *also* be placed
onto the *second* currently-used chunky Bitmap’s image. This is mainly so that a
background-store Bitmap can be created for use with Bitmap-based un-queue
operations.

1.160 mstile32x32store

MSTile32x32Store [ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit 32x32 shape&cook 2 ←↩
bitmaps, size 32x32, align x/y

Does the same as MSTile32x32 except that the Shape’s graphic will *also* be

Mildred 56 / 79

placed onto the *second* currently-used chunky Bitmap’s image. This is mainly so
that a background-store Bitmap can be created for use with Bitmap-based un-queue
operations.

1.161 mtile16x16store

MTile16x16Store [ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit 16x16 shape to 2 ←↩
bitmaps, size 16x16, align x/y

Does the same as MTile16x16 except that the Shape’s graphic will *also* be placed
onto the *second* curretly-used chunky Bitmap’s image. This is mainly so that a
background-store Bitmap can be created for use with Bitmap-based un-queue
operations. The Shape’s cookie is not copied anywhere.

1.162 mtile32x32store

MTile32x32Store [ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit 32x32 shape to 2 ←↩
bitmaps, size 32x32, align x/y

Does the same as MTile32x32 except that the Shape’s graphic will *also* be placed
onto the *second* currently-used chunky Bitmap’s image. This is mainly so that a
background-store Bitmap can be created for use with Bitmap-based un-queue
operations. The Shape’s cookie is not copied anywhere.

1.163 mreservequeues

MReserveQueues [(]NumberOfQueues.w[)] ; Reserve structure-memory for Queues

Before using any of the queue-related commands you need to call MReserveQueues in
order to allocate space to store the basic information needed for some chunky
Queue objects, unless making use of the default reserved Queue objects. This
does not allocate any space for storing actual items onto the Queue, for which
you need to first create a chunky Queue object. Once reserved, Queue numbers
will range from 0 upwards. If used as a function, this command will return the
address in memory where the chunky Queue structures are stored, or 0 for
failure.

1.164 mfreequeues

MFreeQueues [FirstQueue.w,LastQueue.w] ; Free/delete all/range of Queues

Frees all or a range of previously-created queues. If the parameters are omitted
it will free all created chunky Queue objects, otherwise just the range you
specify. When freed, a Queue will be ‘killed’ and the memory for the Queue items
freed so the Queue is effectively empty. If the specified Queues don’t exist it
will report an error, but will not report an error when freeing all Queues.

Mildred 57 / 79

1.165 mfreequeue

MFreeQueue QueueNumber.w ; Free/delete a pre-existing Queue

Frees a specific chunky Queue object. If the chunky Queue doesn’t exist it will
generate an error. The Queue will be ‘killed’ and the memory for the Queue’s
items (if any) will be freed, making the Queue empty.

1.166 maddrqueue

MAddrQueue (QueueNumber.w} ; Returns address of Queue structure

Returns the address of a specified (or currently used) chunky Queue object. This
is the address of the Queue structure, not the address of the item data.

1.167 mqueue

MQueue [(]QueueNumber.w,NumberOfItems.w[)] ; Allocmem for Queue list items

Creates a new chunky Queue object. The Queue is initialised so will be empty.
Once created, you can start to add items to the Queue using the various ‘Q’
blits. Only as many items as you specify are allowed to be added to the Queue
before it will become full. If used as a function, this command will return the
address at which the chunky Queue structure is stored, or 0 for failure.

1.168 mflushqueue

MFlushQueue QueueNumber.w ; Empties the queue to contain no items

Flushes the entire contents of the specified chunky Queue object, making it
empty. Any following un-queue operations will have no effect and you can start
adding new items to the Queue again.

1.169 mqblitmode

MQBlitMode Mode.w ; CookieMode/0 or EraseMode/1 or InvMode/2 or SolidMode/3

The normal ‘QBlit’ family of commands can have a ‘type’ of blit operation which is
set with this command. You can use the already existing Blitz functions or values
0, 1, 2 and 3 which represent CookieMode, EraseMode, InvMode and SolidMode. The
normal mode is CookieMode in which the source’s cookie is used to perform a blit
in which areas of Colour 0 are transparent. EraseMode causes the source’s cookie
to erase an area matching its shae on the destination image. InvMode causes the
destination to be inverted in the shape of the source cookie, and SolidMode
places a solid copy of the cookie into the destination’s image, which will appear
as colour 255. The QBlitMode only affects the blit operation, not the un-queue.
MQBlitMode also works with MColourMode, MReMapMode and MSimpleReMapMode.

Mildred 58 / 79

1.170 mautousequeues

MAutoUseQueues True/False ; Automatically ‘use’ new Queues. <>0=True

If set to True/On, any chunky Queue objects created in future will automatically
be ‘used’ as the ‘current’ main chunky Queue object. Other commands can then use
this to ‘assume’ which Queue you are referring to so that you don’t have to keep
specifying it each time.

1.171 musequeues

MUseQueues MainQueueNum.w[,SecondQueueNum.w[,ThirdQueueNum.w]] ; Current to use

Selects which chunky Queue object to use as ‘current’, and also second and third
‘current’ Queues. These current Queues will be assumed later so that you don’t
have to keep specifying which chunky Queue object(s) to use. Usually only the
main (first) Queue is used.

1.172 musequeue

MUseQueue QueueNumber.w ; Current to use

Selects a specific chunky Queue object to use as current. This current Queue will
be assumed later so that you don’t have to keep specifying which chunky Queue
object to use.

1.173 musedqueue

MUsedQueue ; Returns currently used Queue

Returns the number of the currently used main chunky Queue object.

1.174 mqblit

MQBlit [[Queue.w,]ShapeNumber.w,]Xpos.w,Ypos,w ; QBlit shape to bitmap, any coords

Performs a straight masked-blit of a chunky Shape into a chunky Bitmap to
coordinates Xpos,Ypos. If the ShapeNumber is omitted the currently used Shape is
used. The type of blit performed is defined with the MQBlitMode command. Normally
the Shape is simply cookie-blitted onto the Bitmap, with areas of Colour 0 as
transparent. Just prior to the blit being performed an entry is added to the
specified (or assumed) chunky Queue object corresponding to the area that the
Shape has changed in the destination Bitmap. This area can later be cleared or
restored using an un-queue.

Mildred 59 / 79

1.175 mqblock

MQBlock [[Queue.w,]ShapeNumber.w,]Xpos.w,Ypos.w ; QBlock-blit shape 2 bitmap, ←↩
align Xpos & width in mult of 16

Performs a straight unmasked block-blit of a chunky Shape into a chunky Bitmap to
coordinates Xpos,Ypos. Xpos should be a multiple of 16 and so should the width of
the Shape. If the ShapeNumber is omitted the currently used Shape is used. This
command performs only a solid ‘replace’ blit and does not use Colour 0 as
transparent. Just prior to the blit being performed an entry is added to the
specified (or assumed) chunky Queue object corresponding to the area that the
Shape has changed in the destination Bitmap. This area can later be cleared or
restored using an un-queue.

1.176 munqueue

MUnQueue QueueNumber.w[,BitmapNumber.w] ; UnQueue the queued objects and flush the ←↩
queue

Un-Queues the specified Queue to the current chunky Bitmap. If the Bitmap ←↩
parameter

is omitted a ‘clearscreen’ operation will be performed (to Colour 0) in all of the
areas that have been recorded into the Queue list. If the Bitmap parameter is
specified a chunky Bitmap will be used as a background store, from which the
areas recorded in the Queue will be blitted to the currently used Bitmap instead
of just performing a clearscreen. Once all items have been un-queued, the Queue
will be completely flushed.

1.177 mbitmapptr

MBitmapPtr [Xpos.w,Ypos.w][,BitmapNumber.w] ; Return data address calculated using ←↩
bitmap [and coords]

Returns an address based on the specified chunky Bitmap object. If a Bitmap
object is not specified, the currently-used object will be used. The address is
calculated by taking the base address of the Bitmap’s graphics data. If the
wrapping feature is switched on for the Bitmap, the Bitmap’s origin/handle will
cause an offset to be added to the address to represent those coordinates. If the
clipping feature is switched on for the Bitmap, the top-lefthand coordinates of
the Bitmap’s clip window will be added to the address also to provide an offset
representing that location. Finally, if you have specified Xpos and Ypos these
coordinates will also be added to the address to represent the memory location of
that location. The final address is then returned and is of particular use for
the ‘Chunky.l’ parameter of Mc2p.

1.178 mshapeptr

MShapePtr [Xpos.w,Ypos.w][,ShapeNumber.w] ; Return data address calculated using ←↩
shape [and coords]

Mildred 60 / 79

Does the same as MBitmapPtr except with regards to a chunky Shape object or the
currently used chunky Shape object. The address returned is based on the Shape’s
graphics data and possibly handle, clip window and specified Xpos,Ypos coords.
This command can be used to allow you to easily view a Shape’s graphic with the
c2p system.

1.179 mstencilptr

MStencilPtr [Xpos.w,Ypos.w][,BitmapNumber.w] ; Return address calculated using ←↩
stencil [and coords]

Does the same as MBitmapPtr except with regards to the stencil of a chunky Bitmap
object or the stencil of the currently used chunky Bitmap object. The address
returned is based on the Bitmap’s stencil data and possibly handle/origin, clip
window and specified Xpos,Ypos coords. This command can be used to allow you to
easily view a Bitmap’s stencil with the c2p system.

1.180 mcookieptr

MCookiePtr [Xpos.w,Ypos.w][,ShapeNumber.w] ; Return address calculated using ←↩
cookie [and coords]

Does the same as MBitmapPtr except with regards to the cookie of a chunky Shape
object or the cookie of the currently used chunky Shape object. The address
returned is based on the Shape’s cookie data and possibly handle/origin, clip
window and specified Xpos,Ypos coords. This command can be used to allow you to
easily view a Shape’s cookie with the c2p system.

1.181 mqdummy

MQDummy [Queue.w,]Xpos.w,Ypos.w,Width.w,Height.w ; Add an item to a queue without ←↩
having to do a blit

Adds an item to the specified or currently used chunky Queue object, without
having to perform a blit operation. Width should be a multiple of 4. This command
allows you to add ‘items’ to the queue to represent other kinds of blits which
are not directly supporting of the Queue system, such as the Tile and Scroll
routines.

1.182 msblitmode

MSBlitMode Mode.w ; CookieMode/0 or EraseMode/1 or InvMode/2 or SolidMode/3

The normal ‘SBlit’ family of commands can have a ‘type’ of blit operation which is
set with this command. You can use the already existing Blitz functions or values
0, 1, 2 and 3 which represent CookieMode, EraseMode, InvMode and SolidMode. The

Mildred 61 / 79

normal mode is CookieMode in which the source’s cookie is used to perform a blit
in which areas of Colour 0 are transparent. EraseMode causes the source’s cookie
to erase an area matching its shae on the destination image. InvMode causes the
destination to be inverted in the shape of the source cookie, and SolidMode
places a solid copy of the cookie into the destination’s image, which will appear
as colour 255. The type of blit will be performed on both the destination graphic
and the destination stencil if applicable. MSBlitMode also works with
MColourMode, MReMapMode and MSimpleReMapMode.

1.183 msblit

MSBlit [ShapeNumber.w,]Xpos.w,Ypos,w ; Blit shape to bitmap and cookie to stencil, ←↩
any coords

Performs a straight masked-blit of a chunky Shape into a chunky Bitmap to
coordinates Xpos,Ypos. If the ShapeNumber is omitted the currently used Shape is
used. The type of blit performed is defined with the MSBlitMode command. Normally
the Shape is simply cookie-blitted onto the Bitmap, with areas of Colour 0 as
transparent. If SBlitCut is Off, the same operation is performed with the Shape’s
cookie, in which the cookie is blitted to the Bitmap’s stencil using the same
SBlitMode. If SBlitCut is On, the Bitmap’s stencil will act to protect areas of
the Bitmap’s image, causing the Shape to be blitted ‘behind’ the protected areas.
With SBlitCut On the cookie is no longer copied to the stencil.

1.184 msblock

MSBlock [ShapeNumber.w,]Xpos.w,Ypos.w ; Block-blit shape to bitmap & cookie 2 ←↩
stencil, Xpos&Width in 16’s

Performs a straight unmasked-blit of a chunky Shape into the chunky Bitmap to
coordinates Xpos,Ypos. Xpos should be a multiple of 16 and the shape should also
have a Width that is multiple of 16. The blit will be an un-masked blit and will
not be affected by MSBlitMode but it is possible to cut-blit the block-type Shape
‘behind’ the Bitmap’s stencil using MSBlitCut On. Normally the Shape’s cookie will
also be block-blitted to the Bitmap’s stencil.

1.185 msblitcut

MSBlitCut On/Off ; 0=Paste stencil/cookie, <>0=Cut using stencil/cookie

Selects wether to perform a stencil-cut or a normal stencil-blit when performing
MSblit and MSBlock. If SBlitCut is Off, a Shape’s graphic is blitted to the
Bitmap’s graphic and the Shape’s cookie is blitted to the Bitmap’s stencil. If
SBlitCut is On, the destination Bitmap’s stencil will be used to protect areas of
the Bitmap’s graphic rather than copying the cookie to the stencil, which has the
effect of looking as thought the operation is performed ‘behind’ the protected
areas.

Mildred 62 / 79

1.186 mqsblitmode

MQSBlitMode Mode.w ; CookieMode/0 or EraseMode/1 or InvMode/2 or SolidMode/3

Does the same as MSBlitMode except with reference to the QS-type blits.

1.187 mqsblit

MQSBlit [[Queue.w,]ShapeNumber.w,]Xpos.w,Ypos,w ; QBlit shape to bitmap and cookie ←↩
to stencil, any coords

Does the same as MSBlit except that an item is also added to the specified or
currently used chunky Queue object to represent the area that the blit has
changed on the Bitmap’s graphic. Note that areas of the Bitmap’s stencil are not
accessible by the queue system so when performing an SBlit or SBlock with
SBlitCut Off, changes made to the Bitmap’s stencil will be permanent.

1.188 mqsblock

MQSBlock [[Queue.w,]ShapeNumber.w,]Xpos.w,Ypos.w ; QBlock-blit shape 2 bitmap, ←↩
Xpos&width mult of 16

Does the same as MSBlock except that an item is also added to the specified or
currently used chunky Queue object to represent the area that the blit has
changed on the Bitmap’s graphic. Note that areas of the Bitmap’s stencil are not
accessible by the queue system so when performing an SBlit or SBlock with
SBlitCut Off, changes made to the Bitmap’s stencil will be permanent.

1.189 mqsblitcut

MQSBlitCut On/Off ; 0=Paste stencil/cookie, <>0=Cut using stencil/cookie. Adds ←↩
entry to queue

Does the same as MSBlitCut but with reference to the QS-type blits.

1.190 mboxf

MBoxF Xpos.w,Ypos.w,Xpos2.w,Ypos2.w[,Colour] Draw a filled box in a bitmap [to ←↩
specified colour]

Fills the specified area within the currently used chunky Bitmap to the currently
used ink colour or the specified colour. Width of the box does NOT have to be a
multiple of 4 and the box should be at least 1x1 in size. The specified area
should fit within the dimensions of the Bitmap, and it is possible for X2,Y2 to

be further left and/or further up the screen than X1,Y1.

Mildred 63 / 79

1.191 mboxfshape

MBoxFShape Xpos.w,Ypos.w,Xpos2.w,Ypos2.w[,Colour] Draw a filled box in a shape [to ←↩
specified colour]

Does the same as MBoxF but draws the filled box to the currently used chunky
Shape.

1.192 mboxfstencil

MBoxFStencil Xpos.w,Ypos.w,Xpos2.w,Ypos2.w[,Colour] Draw a filled box in a stencil ←↩
[to specified colour]

Does the same as MBoxF but draws the filled box to the stencil of the currently
used chunky Bitmap. The actual value drawn to the stencil /represents/ the
currently used ink colour or the specified colour.

1.193 mboxfcookie

MBoxFCookie Xpos.w,Ypos.w,Xpos2.w,Ypos2.w[,Colour] Draw a filled box in a cookie [←↩
to specified colour]

Does the same as MBoxF but draws the filled box to the cookie of the currently
used chunky Shape. The actual value drawn to the cookie /represents/ the
currently used ink colour or the specified colour.

1.194 mbox

MBox Xpos.w,Ypos.w,Xpos2.w,Ypos2.w[,Colour] Draw an unfilled box in a bitmap [to ←↩
specified colour]

Draws an unfilled box according to the specified area within the currently used
chunky Bitmap to the currently used ink colour or the specified colour. Width
of the box does NOT have to be a multiple of 4 and the box should be at least
1x1 in size. The specified area should fit within the dimensions of the bitmap.
X2,Y2 is allowed to be further left or further up the screen than X1,Y1.

1.195 mboxshape

MBoxShape Xpos.w,Ypos.w,Xpos2.w,Ypos2.w[,Colour] Draw an unfilled box in a shape [←↩
to specified colour]

Does the same as MBox but draws the unfilled box to the currently used chunky
Shape.

Mildred 64 / 79

1.196 mboxstencil

MBoxStencil Xpos.w,Ypos.w,Xpos2.w,Ypos2.w[,Colour] Draw an unfilled box in a ←↩
stencil [to specified colour]

Does the same as MBox but draws the unfilled box to the stencil of the currently
used chunky Bitmap. The actual value drawn to the stencil /represents/ the
currently used ink colour or the specified colour.

1.197 mboxcookie

MBoxCookie Xpos.w,Ypos.w,Xpos2.w,Ypos2.w[,Colour] Draw an unfilled box in a cookie ←↩
[to specified colour]

Does the same as MBox but draws the unfilled box to the cookie of the currently
used chunky Shape. The actual value drawn to the cookie /represents/ the
currently used ink colour or the specified colour.

1.198 mplanar16tobitmap

MPlanar16ToBitmap BitmapNum.w,PlanarAddr.l[,OpWidth.w,OpHeight.w,PlanarWidth.w, ←↩
PlanarHeight.w] ; Convert p2c

Converts an area of planar-format graphics data into a previously-created chunky
Bitmap object’s graphic. The planar graphic should have contigous non-interleaved
bitplanes without a linemodulo and should have a width that is a multiple of 16.
If the destination chunky Bitmap is larger than the operation, or the source
planar ‘Bitmap’ is larger than the operation, then you should use the long
version of this command and again the same rules about contiguous bitmaps and so
on apply. The operation width should be a multiple of 16, due mainly to the way
that the conversion handles words of planar data at a time (a word is 16 pixels
in planar). You should use PlanarAddr.l to specify the location of the topleft
corner of the planar graphic. If all goes well, the planar graphic (perhaps held
in a blitz bitmap object cludged onto pre-reserved contigous memory) will be
converted to chunky format and placed into the graphic of the specified chunky
Bitmap object.

1.199 mplanar16toshape

MPlanar16ToShape ShapeNum.w,PlanarAddr.l[,OpWidth.w,OpHeight.w,PlanarWidth.w, ←↩
PlanarHeight.w] ; Convert p2c

Does the same as MPlanar16ToBitmap except that the converted data is output to a
previously-created chunky Shape object rather than a chunky Bitmap.

Mildred 65 / 79

1.200 mgenericptr

MGenericPtr Xpos.w,Ypos.w,BaseAddress.l,RowWidth.w ; Calculate and return address ←↩
based on inputs

Returns an address based on the parameters specified. Xpos,Ypos are coordinates
which may represent the offset within a bitmap or something. The expression for
working out the value to return is Base=BaseAddress+(Ypos*RowWidth)+Xpos.
RowWidth is therefore needed to work out the width of the image for creating the
proper offset for the Xpos,Ypos coordinate. If using this command with regards to
planar bitmaps (blitz’s normal Bitmap objects) for example, you would need to
devide Xpos and RowWidth by 8 before passing the parameters.

1.201 mcludgecookie

MCludgeCookie ShapeNumber.w,Memory.l ; Cludge shape’s cookie from existing mem

Once a chunky Shape object has been created you may wish to cludge a new cookie
from some existing graphics memory rather than create a new memory area for it.
This command allows you to do that, although bear in mind that it uses the
following expression to calculate where the cookie should begin:
Base=((Memory+16) and $FFFFFFF0). This is to provide proper support for block and
tile routies on 040+ cpu’s so be careful that you have reserved at least 16 bytes
more memory than is needed to hold the entire cookie.

1.202 mcludgestencil

MCludgeStencil BitmapNumber.w,Memory.l ; Cludge bitmap’s stencil from existing mem

Does the same as MCludgeCookie except with regards to cludging a new stencil for
a previously-created chunky Bitmap.

1.203 munqueuerange

MUnQueueRange QueueNumber.w,FirstItem.w,LastItem.w[,BitmapNumber.w] ; UnQueue a ←↩
range of queued objects

Does the same as MUnQueue except that it allows you specify a range of items in
the queue. Items are placed in the queue in the order you design and will be
numbered from 0 upwards. Once the range of items (which may be only one item) has
been un-queued, perhaps with a clearscreen on the region or a blit from a store
Bitmap, the specified chunky Queue is NOT flushed so at some point it may become
necessary to do an MFlushQueue.

1.204 mremap

Mildred 66 / 79

MReMap [Colour#0.b,Colour#1.b,BitmapNum.w] *or* [RemapTable.l[,BitmapNum.w]] ; ←↩
Remap #0 to #1 or with table

Remaps the colours in a chunky Bitmap’s graphic from one colour to another.
You specify two colour numbers. Pixels of the first colour number (0..255) are
searched for and when found a replaced with the second colour number (0..255). So
all pixels of the first specified colour become the second specified colour.
There is an alternative set of parameters possible with this command in which you
specify the address of a remapping table and possibly also the number of a Bitmap
to use (if not specified it will use the currently used chunky Bitmap). The
remapping table should be 256 bytes, each byte corresponding to the 256 colours
of the graphic in the chunky Bitmap. The first colour value is read from the
Bitmap using a kind of ‘point’ operation. The second colour value, which is the
colour it will be changed to, is then read from the remapping table relevant to
the colour that had been found in the Bitmap. ALL pixels in the Bitmap will be
remapped, although this can be cropped using the Bitmap’s clip window with
clipping set to On for that Bitmap. You currently need to generate the remapping
table yourself.

1.205 mremapshape

MReMapShape [Colour#0.b,Colour#1.b,ShapeNum.w] *or* [RemapTable.l[,ShapeNum.w]] ; ←↩
Remap #0 to #1 or with table

Does the same as MReMap but performs the remapping operation on the currently
used or specified chunky Shape object.

1.206 mline

MLine [Xpos.w,Ypos.w,]Xpos2.w,Ypos2.w[,Colour.b] ;Draw a line from X1,Y1 to X2,Y2 ←↩
in a Bitmap, Colour or 0

Draws a line in the specicied colour or ink, starting at Xpos,Ypos and ending
at Xpos2,Ypos2 in the currently used chunky Bitmap. If Xpos,Ypos are omitted,
the end coordinates of the previously drawn line will be used, allowing you to
easily draw a chain of connected lines (a polyline).

1.207 mlineshape

MLineShape [Xpos.w,Ypos.w,]Xpos2.w,Ypos2.w[,Colour.b] ;Draw a line from X1,Y1 to ←↩
X2,Y2 in a Shape, Colour or 0

Does the same as MLine, except that the line is rendered to the currently
used chunky Shape.

1.208 mlinestencil

Mildred 67 / 79

MLineStencil [Xpos.w,Ypos.w,]Xpos2.w,Ypos2.w[,Colour.b];Draw a line from X1,Y1 to ←↩
X2,Y2 in a stencil, Col or 0

Does the same as MLine, except that the line is drawn to the stencil of the
currently used chunky Bitmap, and the colour drawn will /represent/ the
specified colour or ink.

1.209 mlinecookie

MLineCookie [Xpos.w,Ypos.w,]Xpos2.w,Ypos2.w[,Colour.b] ;Draw a line from X1,Y1 to ←↩
X2,Y2 in a cookie, Col or 0

Does the same as MLine, except that the line is drawn to the cookie of the
currently used chunky Shape, and the colour drawn will /represent/ the
specified colour or ink.

1.210 mremapusingshape

MReMapUsingShape RemapTable.l[,SourceShapeNum.w[,DestBitmapNum.w]] ;Merge shape to ←↩
bitmap using 2xWay Table

Performs a remapping operation using a previously calculated colour-lookup
table. If not specified, the currently used chunky Bitmap object will be
used as the destination for the remapping, and if a shape is not specified it
will use the currently used chunky Shape object. Pixels are read from the
destination Bitmap and from the source Shape and their values are used as
an offset into the table (RemapTable.l is an address pointing to the base of
your table). Then a byte value, representing what colour the pixel should be
changed to, is taken from the appropriate position in the table and output
to the destination bitmap. You may wish to use a call to MQDummy to add the
affected area to the queue, otherwise multiple remaps to the same area will
cause a possibly wrong effect. The width and height of the remap operation
are equal to the width and height of the chunky Shape object being used, and
the coordinates in the Bitmap at which the remapped area will be rendered are
taken from the Shape’s handle, which you should set with MHandle, and are also
dependent on any possible wrapping of the Bitmap’s origin. It does not matter
if ShapeWrap is on or not. Normally the operation will output to coordinates
0,0 in the Bitmap, unless you have altered the Shape’s handle, and be careful
with negative handles or ones which position the operation outside of the
Bitmap into unreserved memory because the runtime errorchecking does not check
that the operation fits. Using MReMapUsingShape it is possible to merge, mix,
add and negate the image, as well as performing various effects such as
lighting, smoke, fire, mist/fog, etc, and the table (which should be 256x256
bytes) allows all 256 colours of source and destination to be combined. Offsets
in the remapping table should be calculated using the colour from the
destination bitmap in the low byte, and the colour from the source shape in the
high byte, producing a number from 0..65535. The colour that you would like this
combination of colours to produce should then be written to the table at that
position in the table.

Mildred 68 / 79

1.211 mremapshapeusingshape

MReMapShapeUsingShape RemapTable.l[,SourceShapeNum.w[,DestShapeNum.w]] ;Merge ←↩
shape to shape using 2xWay Table

Does the same as MReMapUsingShape, except that a chunky Shape will be used
as the output rather than a chunky Bitmap. If DestShapeNum.w is not specified,
the /second/ currently used Shape will be assumed. The first used chunky Shape
will be assumed if SourceShapeNum is also omitted.

1.212 mink

MInk Colour.b ; Set what colour to assume as currently used. 0..255

Sets the currently used colour so that graphics operations can assume it rather
than you having specify a colour for every call. The colour should be from 0 to
255 inclusive. The ink colour will be used for a variety of operations, but note
that clearscreen operations (MCls) will always assume a colour of 0 as that is
more logical. The ink colour, prior to being defined by the programmer, will
default to 1.

1.213 mcolourmode

MColourMode ;Returns value 4 which represents ‘colour’ mode in the blit modes

For use with one of the ‘BlitMode’ commands, such as MBlitMode, the MColourMode
function can be used in the same way as the default CookieMode, SolidMode,
InvMode and EraseMode. MColourMode is a new blit mode that will render the source
image to the destination so that all of the pixels in the source are of one
colour. That colour is specified with the MInk command. The colour-blit is based
on the shape’s cookie which is turned into pixels of the ink colour and then
output. MColourMode performs a similar function to SolidMode, except that you can
define what colour the shape will be solidly displayed in. MColourMode can be
used with MBlitMode, MQBlitMode, MSBlitMode, MQSBlitMode and MMaskScrollMode.

1.214 mreservetables

MReserveTables [(]NumberOfTables.w[)] ; Reserve structure-memory for Tables

Allows you to reserve space for the structures of some table objects. It does not
allocate space for the actual table itself. A table object is similar to a queue
but generally contains a lookup table of byte data rather than information about
the position of areas to be unqueued. By default, 20 tables will be allocated,
meaning that at most you are allowed to create tables numbering 0 to 19. If you
want more tables than this then you need to use MReserveTables. Any pre-existing
tables will be erased before space for new tables is made. If used as a function,
this command will return the address in memory at which the table structures have
been allocated.

Mildred 69 / 79

1.215 mfreetables

MFreeTables [FirstTable.w,LastTable.w] ; Free/delete all/range of Tables

Frees all of the Table objects that have been created, or a range of objects
ranging from FirstTable to LastTable inclusive. Generally there will not be a
check to see if the tables exist or not. Once freed, the Table objects will be
effectively dead and free of actual data.

1.216 mfreetable

MFreeTable TableNumber.w ; Free/delete a pre-existing Table

Frees a single Table object, as specified with TableNumber. If the object does
not exist, the runtime errorchecking routine will report an error. Once freed the
Table will be effectively dead and free of actual data.

1.217 maddrtable

MAddrTable (TableNumber.w} ; Returns address of Table structure

Returns the address in memory at which a particular table object is stored. This
is the address of the object’s structure, not the address of the data.

1.218 mtable

MTable [(]TableNumber.w,SizeInBytes.l[)] ; Allocmem for Table list items

Initialises a new chunky Table object. The number of the table is specified with
TableNumber and you should specify how many byte of memory can be stored in the
table. This command is basically an elaborate form of memory allocation, but
holds some data which is needed by other parts of Mildred such as the MReMap blit
mode. One initialised the data in the Table will be nonsense, or possibly 0’s.
If used as a function, this command will return the address in memory at which
the Table data is being held, which is the base address of the data.

1.219 mflushtable

MFlushTable TableNumber.w ; Empties the table to contain no items

Performs a similar function to MFlushQueue except that it performs it on a Table
object. This does not erase any data in the table, it simply resets the internal
pointer that points to the ‘current’ item so that it is pointing to the start of
the table. At this time, this command doesn’t really relate with any other part
of Mildred.

Mildred 70 / 79

1.220 mautousetables

MAutoUseTables True/False ; Automatically ‘use’ new Tables. <>0=True

Selects wether or not to automatically ‘use’ new Table objects as the current
object. If this is set to True or On (or -1), any new Table object that is
created will be automatically used as the current object. This command defaults
to the ‘On’ state prior to alterations by the programmer.

1.221 musetables

MUseTables MainTableNum.w[,SecondTableNum.w[,ThirdTableNum.w]] ; Current to use

Selects one, two or three Table objects to use as current. Normally the
MainTableNum will be used first. Once selected, other routines can assume to use
these Table(s) in their operations.

1.222 musetable

MUseTable TableNumber.w ; Current to use

Selects a single Table objet to use as current. This is the main Table that will
be used as in MUseTables. Once selected, other routines can assume to use this
Table in their operations.

1.223 musedtable

MUsedTable ; Returns currently used Table

Returns the number of the currently used main Table object.

1.224 mtableptr

MTablePtr [TableNum.w] ; Returns pointer to base of the table itself

Returns an address in memory at which the actual data for a table is being
stored. This is the base-address of the data itself, not the Table structure. If
omitted, the currently used main Table will be referenced.

1.225 mremapmode

Mildred 71 / 79

MReMapMode ;Returns value 5 which represents ‘ReMap’ mode in the blit modes (uses ←↩
current 2-dimensional table)

For use with one of the ‘BlitMode’ commands, such as MBlitMode, the MReMapMode
function can be used in the same way as the default CookieMode, SolidMode,
InvMode and EraseMode. MReMapMode is a new blit mode that will render the source
image to the destination at the same time as performing a remapping of the
colours using a previously created lookup table, ie a Table object. The currently
used table object will be used and it should be a 2 dimensional table of 8-bit
data, ie 256x256 bytes. When MReMapMode is the blit mode of choice, the source
will be blitted to the destination in the manner according to the type of blit
(MBlit, SBlit, etc), but also the source and destination will be combined using
the Table to produce some kind of remapping effect. It depends on what the
Table has been computed for as to what the effect will be, but it is possible to
do things such as semi-transparent merges, brightness changes, add and subtract,
etc. Also you should note that in MReMap mode, the entirity of the Shape’s
rectangle will be remapped. It is therefore necessary to build in masking support
to the actual Table, by checking for combinations where the source colour is
colour 0, and using a straight copy of the destination colour for those
combinations. This will cause pixels of 0 in the Shape, for example, to appear to
be transparent, or alternatively you can deliberately cause some effect to occur
in the normally transparent areas. MReMapMode can be used with MBlitMode,
MQBlitMode, MSBlitMode, MQSBlitMode and MMaskScrollMode. MReMapMode is somewhat
slower than other blit modes due to the intensive processing required.

1.226 msimpleremapmode

MSimpleReMapMode ;Returns value 6 which is ‘SimpleReMap’ mode in blit modes (uses ←↩
current 1-dimensional table)

For use with one of the ‘BlitMode’ commands, as described more fully in the
documentation for MReMapMode. MSimpleReMapMode is similar except that it uses a
1-dimensional remapping table, comprising just 256 bytes, each byte representing
the value that the pixels in the destination (and part of the Shape’s cookie)
will be changed to. This simple remapping is faster than the 2-dimensional remap
and does not take into account the source Shape data, except for its cookie which
it uses to mask the area that will be altered in the destination. The end result
is that the area in the destination, in the design of the source Shape’s image,
will be remapped to new values. It is quite feasible to remap only certain
colours by ensuring that the colours to be protected in the table get remapped
without any alteration in value. MSimpleReMapMode will work with MBlitMode,
MQBlitMode, MSBlitMode, MQSBlitMode, and MMaskScrollMode.

1.227 msmaskscrollmode

MSMaskScrollMode Mode.w ; CookieMode/EraseMode/InvMode/SolidMode/MColourMode/ ←↩
MReMapMode/MSimpleReMapMode

The SMask family of Scroll commands can have a ‘type’ of blit operation which is
set with this command. You can use the already existing Blitz functions or values
0, 1, 2 and 3 which represent CookieMode, EraseMode, InvMode and SolidMode. The

Mildred 72 / 79

normal mode is CookieMode in which the source’s stencil or cookie is used to
perform a blit in which areas of Colour 0 are transparent. EraseMode causes the
source’s stencil or cookie to erase an area matching its shape on the
destination image. InvMode causes the destination to be inverted in the shape of
the source stencil or cookie, and SolidMode places a solid copy of the source’s
stencil or cookie into the destination’s image, which will appear as Colour 255.
MSMaskScrollMode also works with MColourMode, MReMapMode and MSimpleReMapMode.

1.228 mplotparticles

MPlotParticles CoordinateList.l,NumPoints.l[,Colour.b] ; Plot lots of points from ←↩
an X.w,Y.w table of coords

Performs multiple Plot operations to the currently used chunky Bitmap, in the
current Ink colour or the specified colour. CoordinateList.l should point to
memory containing a list of coordinates. The coordinates should normally be within
the bitmap’s dimensions. The list should contain X.w,Y.w pairs. The total number
of points that are to be processed is passed as NumPoints.l, and notice that this
is a longword value and allows for more particles than you probably have the
memory capacity for, although there is a limit of about 2^29 particles.
Coordinates are taken from the list and the pixels are plotted to those locations
on the bitmap, in the colour being used or specified. When MParticleMode is set
to MSimpleReMapMode or MReMapMode, points will be simple or complex remapped
respectively. In MReMapMode, the specified colour or ink will be used as the
source. In MSimpleReMapMode the destination pixels will be simple-remapped
regardless of the specified or currently used colour.

1.229 mgrabparticles

MGrabParticles CoordinateList.l,NumPoints.l,Buffer.l ; Grab lots of points from X. ←↩
w,Y.w table, into buffer mem

Performs multiple Point operations from the currently used chunky Bitmap.
CoordinateList.l should point to the list of coordinates which should be in
X.w,Y.w pairs. Specify the total number of points in NumPoints.l and finally pass
the address of a memory buffer in Buffer.l. Pixels, which will be a byte in size
each, will be grabbed from the bitmap according to the coordinates from the list,
and placed into the memory buffer. This command is mainly used for picking up
areas from an image, which may be for use as part of a background-preservation
system when moving using particles as an animation feature.

1.230 mdrawparticles

MDrawParticles CoordinateList.l,NumPoints.l,Buffer.l ; Draw lots of previously ←↩
grabbed points, using X.w,Y.w’s

Performs a kind of ‘unbuffer’ using a memory buffer (Buffer.l) of previously
created or grabbed pixels. The list, pointed to with CoordinateList.l, will be
read in reverse order, facilitating a stack rather than a queue system. This
allow this command to be used to correctly restore the pixels in the background

Mildred 73 / 79

which were possibly trashed by other commands. It can also be used simply to
render a buffer of coloured pixels, perhaps representing an image, to locations
on the bitmap according to the X.w,Y.w coordinate list. When MParticleMode is
set to MSimpleReMapMode or MReMapMode, points will be simple or complex remapped
respectively. In MSimpleReMapMode, the buffer points will be simple-remapped and
then simply placed in the destination. In MReMapMode, points will be
complex-remapped as a combination of buffer pixels and destination pixels.

1.231 mgrabparticlesandplot

MGrabParticlesAndPlot CoordinateList.l,NumPoints.l,Buffer.l[,Colour.b]; Grabs ←↩
points X.w,Y.w to buffer & plots

Does the same as MGrabParticles, at the same time as doing the same as
MPlotParticles. As each particle is grabbed from the currently used chunky
Bitmap, according to the list of X.w,Y.w coordinates listed as pointed to by
CoordinateList.l, pixels in the currently used Ink or the specified Colour will
be plotted to the same coordinates. This facilitates a kind of ‘buffered plot’
system whereby the background is stored using the grab and then pixels rendered
using the plot. Buffer.l points to the buffer memory to which the background
pixels will be grabbed and NumPoints.l specifies how many points will be handled.
If MParticleMode is set to MSimpleReMapMode or MReMapMode, pixels will be simple
or complex remapped respectively when they are plotted. If MReMapMode is chosen,
the source colour will be taken from the specified colour or ink. In
MSimpleReMapMode the destination pixels will be simple-remapped regardless of
specified or currently used colour.

1.232 maddtoparticles

MAddToParticles CoordinateList.l,NumPoints.l,IncA.l[,IncB.l] ; Add X.w,Y.w to X.w, ←↩
Y.w items in particle list

Processes a list of X.w,Y.w coordinates as pointed to by CoordinateList.l, adding
X.w,Y.w increments to each pair as taken from the list pointed to by
IncA.l. The increments list should contain pairs of words which are
amounts to be added to the X and Y components in the coordinate list. The end
result is that the particle locations are moved. The increment list could be a
set of carefully worked out ‘adders’, or perhaps a list of precalculated random
numbers. This command does not render any particles, it simple moves them. If a
second increment list is specified its X.w,Y.w values will also be added to the
particles.

1.233 mplotparticlesa

MPlotParticlesA AddressList.l,NumPoints.l[,Colour.b] ; Plot lots of points from an ←↩
Ptr.l table of coords

Does the same as MPlotParticles, except that the items on the list are stored as
actual memory addresses. Each address (a longword) is the actual address in
memory at which a pixel is to be plotted. Many animation effects are possible

Mildred 74 / 79

using addresses rather than coordinates, and the plotting of pixels is much
faster due to the time-consuming calculations being avoided in working out where
in memory to output to. There is only one longword per item, which represents the
X and Y coordinates combined.

1.234 mgrabparticlesa

MGrabParticlesA AddressList.l,NumPoints.l,Buffer.l ; Grab lots of points from Ptr. ←↩
l table, into buffer mem

Does the same as MGrabParticles, except that the items on the list are stored as
actual memory addresses. Each address (a longword) is the actual address in
memory from which a pixel is to be plotted. Many animation effects are posible
using addresses rather than coordinates, as the grabbing of pixels is much faster
due to the time-consuming calculations being avoided in working out where in
memory to grab from. There is only one longword per item, which represents the X
and Y coordinates combined. Particles are grabbed to the memory buffer pointed to
by Buffer.l.

1.235 mdrawparticlesa

MDrawParticlesA AddressList.l,NumPoints.l,Buffer.l ; Draw lots of previously ←↩
grabbed points, using Ptr.l’s

Does the same as MDrawParticles, except that the items on the list are stored as
actual memory addresses. Each address (a longword) is the actual address in
memory to which pixels will be drawn. Many animation effects are possible due to
the time-consuming calculations being avoided in working out where in memory to
grab from. There is only one longword per item, which represents the X and Y
coordinates combined. Particles are drawn from the memory buffer pointed to by
Buffer.l, and the whole lot is done in reverse order in order to facilitate a
stack system.

1.236 mgrabparticlesandplota

MGrabParticlesAndPlotA AddressList.l,NumPoints.l,Buffer.l[,Colour.b] ; Grabs ←↩
points Ptr.l to buffer & plots

Does the same as MGrabParticlesAndPlot, except that the items on the list are
stored as actual memory addresses. Each address (a longword) is the actual
address in memory at which particles will be grabbed and plotted. Many animation
effects are possible due to the time consuming calculations being avoided in
working out where in memory to grab from or plot to. There is only one longword
per item, which represents the X and Y coordinates combined. Particles are
grabbed to the memory buffer pointed to by Buffer.l.

Mildred 75 / 79

1.237 maddtoparticlesa

MAddToParticlesA AddressList.l,NumPoints.l,IncA.l[,IncB.l] ; Add Ptr.l to Ptr.l ←↩
items in particle list

Does the same as MAddToParticles, except using a list of longword pointers. The
address list is the list of longword pointers representing coordinates, and the
list pointed to by Inca.l is a list of longword values to add to those
pointers, which could be values representing X and Y combined coordinates to
add/subtract. If a second increment list is specified then a second list of Ptr.l
values will be added to the particles.

1.238 mplotparticlesq

MPlotParticlesQ CoordinateList.l,NumPoints.l[,Colour.b] ; Plot lots of points from ←↩
an X.q,Y.q table of coords

Does the same as MPlotParticles except that the list data are pairs of X.q,Y.q.
In this respect, a .q quick are longwords each, causing two longwords to be
needed for each pixel. The top 16 bits of each component will be used as integer
coordinates, and the lower 16 bits are the decimal part which this command
ignores.

1.239 mgrabparticlesq

MGrabParticlesQ CoordinateList.l,NumPoints.l,Buffer.l ; Grab lots of points from X ←↩
.q,Y.q table, to buffer mem

Does the same as MGrabParticles except that the list data are pairs of X.q,Y.q.
In this respect, a .q quick are longwords each, causing two longwords to be
needed for each pixel. The top 16 bits of each component will be used as integer
coordinates, and the lower 16 bits are the decimal part which this command will
ignore.

1.240 mdrawparticlesq

MDrawParticlesQ CoordinateList.l,NumPoints.l,Buffer.l ; Draw previously grabbed ←↩
points, using X.q,Y.q’s

Does the same as MDrawParticlesQ except using X.q,Y.q list data. Each list item
is a longword quick value in which the upper word is taken as the integer
coordinate and the lower word, the decimal, is ignored. Two longwords are
required for each pixel in the list.

1.241 mgrabparticlesandplotq

Mildred 76 / 79

MGrabParticlesAndPlotQ CoordinateList.l,NumPoints.l,Buffer.l[,Colour.b];Grabs ←↩
points X.q,Y.q to buffer & plots

Does the same as MGrabParticlesAndPlot, except using X.q,Y.q list data. Each list
item is a longword quick value in which the upper word is taken as the integer
coordinate and the lower word, the decimal, is ignored. Two longwords are
required for each pixel in the list.

1.242 maddtoparticlesq

MAddToParticlesQ CoordinateList.l,NumPoints.l,IncA.l[,IncB.l] ; Add X.q,Y.q to X.q ←↩
,Y.q items in particle list

Does the same as MAddToParticles except that the coordinate list comprises
X.q,Y.q pairs of items, and the increment list also contains X.q,Y.q data. If a
second increment list is specified, its X.q,Y.q contents will also be added to
the data.

1.243 mwrapparticles

MWrapParticles CoordinateList.l,NumPoints.l ; Bring particles in from opposite ←↩
edge to which they left

Checks the particles in the list of X.w,Y.w coordinates as pointed to by
CoordinateList.l to see if they are outside of the bitmap or clip window
dimensions, and if so it makes the particle re-enter at the opposite edge to
which it left. This feature only works within reason, in that the zone of
detection around the edge of the bitmap or clip window is the same width as the
bitmap or clip window itself. Particles further away than that will not be
properly wrapped. An example is that a pixel may leave the bottom of the bitmap,
the wrap will detect this and subtract the height of the bitmap from the Y
coordinate, so that the pixel appears to have re-entered at the top.

1.244 mwrapparticlesa

MWrapParticlesA CoordinateList.l,NumPoints.l ; Bring particles in from opposite ←↩
edge to which they left

Does the same as MWrapParticles except with a list of Ptr.l data. Because it is
not possible to efficiently check the position in terms of X and Y coordinates,
the address will only be vertically wrapped. If the pixel goes off the bottom of
the bitmap or clip window it should reappear at the top, and vice versa, but
going off the left or right edges will not cause a wrap, although some kind of a
wrap may occur due to the normal arrangement of the bitmap data.

1.245 mwrapparticlesq

Mildred 77 / 79

MWrapParticlesQ CoordinateList.l,NumPoints.l ; Bring particles in from opposite ←↩
edge to which they left

Does the same as MWrapParticles except with X.q,Y.q data. Each coordinate pair is
two longwords, and the upper word of each longword is taken to be the integer
coordinate. The decimal part is ignored. Particles will be wrapped around left,
right, top and bottom edges.

1.246 mreboundparticles

MReboundParticles CoordinateList.l,NumPoints.l,DirectionList.l,DetectSize.w ; ←↩
Bounce particles off edges

This command will attempt to bounce moving particles off of the edges of the
bitmap or clip window. The size of the border of detection is defined with
DetectSize.w. This is how close to the edge a pixel must be before its direction
will be reversed. Note that pixels need to be at least within the border in order
to cause this action, and care should be taken to ensure the border is wide
enough to trap even the fastest moving particles. CoordinateList.l points to a
list of X.w,Y.w pairs of coordinates and DirectionList.l points to a list of
Xmove.w,Ymove.w pairs of movement adders. If the routie detects that a pixel is
close enough to the edge of the bitmap or clip window, the corresponding Xmove
and Ymove will be negated, which brings about a reversing of direction.

1.247 mreboundparticlesq

MReboundParticlesQ CoordinateList.l,NumPoints.l,DiectionList.l,DetectSize.w ; ←↩
Bounce particles off edges

Does the same as MReboundParticles except that the coordinate table is a list of
X.q,Y.q data and the movement table is a list of Xmove.q,Ymove.q movement adders.
The .q quick data are pairs of longwords, the upper word of each being taken as
the integer coordinate. Note that the whole of the movement variables will be
negated, not just their upper words.

1.248 mprocessor

MProcessor ; Returns value 0..6 representing MC68000..MC68060 cpu according to ←↩
exec\AttnFlags

Replaces the blitz instruction ‘Processor’ to provide a function to return a
value representing what cpu the host computer has available. Values from 0 to 6
will be returned, representing MC68000 to MC68060 cpu’s. Normally most of Mildred
will take any value >=4 as meaning that special 040 only routines should be used,
where possible. The only difference is that the old ‘Processor’ instruction did
not return values higher than 4, so it was not possible to detect the presence of
an 060 cpu. It is recommended that you use ‘MProcessor’ in place of ‘Processor’ ←↩

where
possible. Also note that as of v1.36, Mildred will auto-detect the available cpu

Mildred 78 / 79

using MProcessor and will set default values for MCPU, Mc2pCPUmode and
M040c2pUsage accordingly. Care should be taken when choosing a cpu that is not
the same as the cpu on the host system, although this will not often be required
or efficient.

1.249 maddxytoparticles

MAddXYToParticles CoordinateList.l,NumPoints.l,XToAdd.w,YToAdd.w ; Add constants ←↩
to all particles

Adds constant value XToAdd.w to X.w in the particle list, and constant value
YToAdd.w to Y.w in the particle list. The constants are added to all particles.
To ignore a component, an adder of 0 is permitted. If either of XToAdd or YToAdd
are 0, optimised routines will be used.

1.250 maddxytoparticlesa

MAddXYToParticlesA CoordinateList.l,NumPoints.l,ValueToAdd.l ; Add constant to all ←↩
particle pointers

Adds a constant value ValueToAdd.l to the Ptr.l components of a particle list.
The value will be added to all particles in the list.

1.251 maddxytoparticlesq

MAddXYToParticlesQ CoordinateList.l,NumPoints.l,XToAdd.q,YToAdd.q ; Add constants ←↩
to all particles

Adds constant value XToAdd.q to X.q in the particle list, and constant value
YToAdd.q to Y.q in the particle list. The constants are added to all particles.
To ignore a component, an adder of 0 is permitted. If either XToAdd or YToAdd are
0, optimised routines will be used.

1.252 mparticlemode

MParticleMode Mode.w ; MColourMode, MSimpleReMapMode or MReMapMode - to use in ←↩
particle plot/draw

Allows you to choose a rendering mode for use in the particle animation commands.
Legal parameters are MColourMode, MSimpleReMapMode, or MReMapMode. The default is
MColourMode, which will cause things to behave normally. If a remappig mode is
chosen, the plot, draw, and grab&plot routines will behave differently. In
MReMapMode, the plot routines will take the ‘source’ colour from the specified
colour or the current ink colour, whereas in MSimpleReMapMode it will just remap
the destination. The same applies to the MGrabParticlesAndPlot commands. The
particle draw commands such as MDrawParticles will output the buffer normally in
MColourMode. In MSimpleReMapMode they will simple-remap the buffer data and

Mildred 79 / 79

output it to the destination, in which the data is NOT combined with the
destination. In MReMapMode the buffer data will be the source and the destination
data the destination for a normal 2-dimensional remap.

	Mildred
	Mildred v1.38
	Mildred information
	Library History
	mc2prowlacing
	mc2pcolumnlacing
	mc2prowtoggle
	mc2pcolumntoggle
	mc2ptogglesingle
	mc2ptoggledouble
	mc2ptoggletriple
	mc2ptoggle
	m040c2pusage
	mc2pcpumode
	mc2pwindow
	mc2pwindowwidth
	mc2pwindowheight
	mc2pwindownewheight
	mc2p
	mreservec2pwindows
	mreserveshapes
	mreservebitmaps
	minitshape
	mshape
	mbitmap
	mautocookie
	mautostencil
	mfreec2pwindows
	mfreec2pwindow
	mfreeshapes
	mfreeshape
	mfreebitmaps
	mfreebitmap
	mshapewidth
	mbitmapwidth
	mshapeheight
	mbitmapheight
	maddrc2pwindow
	maddrshape
	maddrbitmap
	mhandle
	mbitmaporigin
	mmidhandle
	mbitmapmidorigin
	musec2pwindows
	musec2pwindow
	museshapes
	museshape
	musebitmaps
	musebitmap
	musedc2pwindow
	musedshape
	musedbitmap
	mcludgeshape
	mcludgebitmap
	mautousec2pwindows
	mautouseshapes
	mautousebitmaps
	mmakecookies
	mmakecookie
	mmakestencils
	mmakestencil
	mfreecookies
	mfreecookie
	mfreestencils
	mfreestencil
	mautoshapewrap
	mautobitmapwrap
	mshapewrap
	mbitmapwrap
	mcludgeshapestruct
	mcludgebitmapstruct
	mcopyc2pwindow
	mshapewindow
	mbitmapwindow
	mbitmapshape
	mshapesbitmap
	mcopyhandle
	mcopyorigin
	mautocookiexflip
	mautocookieyflip
	mautostencilxflip
	mautostencilyflip
	mautocookieflip
	mautostencilflip
	mshapexflip
	mshapeyflip
	mbitmapxflip
	mbitmapyflip
	mcookiexflip
	mcookieyflip
	mstencilxflip
	mstencilyflip
	mautoshapeclip
	mautobitmapclip
	mshapeclip
	mbitmapclip
	mgetashape
	mgetabitmap
	mscroll
	mscrollshape
	mscrollstencil
	mscrollcookie
	mmaskscroll
	mmaskscrollshape
	mmaskscrollstencil
	mmaskscrollcookie
	mscrollbitmaptoshape
	mscrollshapetobitmap
	mscrollstenciltocookie
	mscrollcookietostencil
	mmaskscrollbitmaptoshape
	mmaskscrollshapetobitmap
	mmaskscrollstenciltocookie
	mmaskscrollcookietostencil
	mblockscroll
	mblockscrollshape
	mblockscrollstencil
	mblockscrollcookie
	mblockscrollbitmaptoshape
	mblockscrollshapetobitmap
	mblockscrollstenciltocookie
	mblockscrollcookietostencil
	mcpu
	mcls
	mclsshape
	mclsstencil
	mclscookie
	mplot
	mplotshape
	mplotstencil
	mplotcookie
	mpoint
	mpointshape
	mpointstencil
	mpointcookie
	msscroll
	msscrollshape
	msscrollbitmaptoshape
	msscrollshapetobitmap
	msmaskscroll
	msmaskscrollshape
	msmaskscrollbitmaptoshape
	msmaskscrollshapetobitmap
	msblockscroll
	msblockscrollshape
	msblockscrollbitmaptoshape
	msblockscrollshapetobitmap
	msscrollcut
	museshapebank
	mpicturedissolvein
	mmaskscrollmode
	mblitmode
	mblit
	mblock
	mtile16x16
	mtile32x32
	mstile16x16
	mstile32x32
	mstile16x16store
	mstile32x32store
	mtile16x16store
	mtile32x32store
	mreservequeues
	mfreequeues
	mfreequeue
	maddrqueue
	mqueue
	mflushqueue
	mqblitmode
	mautousequeues
	musequeues
	musequeue
	musedqueue
	mqblit
	mqblock
	munqueue
	mbitmapptr
	mshapeptr
	mstencilptr
	mcookieptr
	mqdummy
	msblitmode
	msblit
	msblock
	msblitcut
	mqsblitmode
	mqsblit
	mqsblock
	mqsblitcut
	mboxf
	mboxfshape
	mboxfstencil
	mboxfcookie
	mbox
	mboxshape
	mboxstencil
	mboxcookie
	mplanar16tobitmap
	mplanar16toshape
	mgenericptr
	mcludgecookie
	mcludgestencil
	munqueuerange
	mremap
	mremapshape
	mline
	mlineshape
	mlinestencil
	mlinecookie
	mremapusingshape
	mremapshapeusingshape
	mink
	mcolourmode
	mreservetables
	mfreetables
	mfreetable
	maddrtable
	mtable
	mflushtable
	mautousetables
	musetables
	musetable
	musedtable
	mtableptr
	mremapmode
	msimpleremapmode
	msmaskscrollmode
	mplotparticles
	mgrabparticles
	mdrawparticles
	mgrabparticlesandplot
	maddtoparticles
	mplotparticlesa
	mgrabparticlesa
	mdrawparticlesa
	mgrabparticlesandplota
	maddtoparticlesa
	mplotparticlesq
	mgrabparticlesq
	mdrawparticlesq
	mgrabparticlesandplotq
	maddtoparticlesq
	mwrapparticles
	mwrapparticlesa
	mwrapparticlesq
	mreboundparticles
	mreboundparticlesq
	mprocessor
	maddxytoparticles
	maddxytoparticlesa
	maddxytoparticlesq
	mparticlemode

